Routh Stability

Special Cule

$$P(s) = 2s^{2}+2$$

$$P(s) = 0 = 2s^{2}+2 = > s^{2}+1 = 0$$

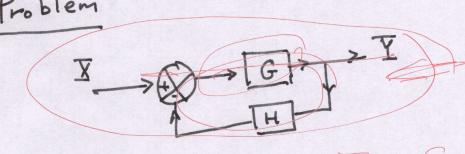
$$S = -i$$

$$P(s) = 2s^4 + 48s$$

$$\frac{dP(s)}{ds} = 8s^3 + 96s$$

-		
	24	-23
55	1 48	~,
54	2 96	
5	8 (-50) - (2)(0)	
52	(8)(48)-(2)96) 8(-50)/(2)(3)	
	2704/24 -50	
	(24) (96) [(8) (-50)	
S		
. 50	(-50) (2704/24) - (24)(0)	
	2704/24 > _50	

Problem



$$G = \frac{4s+k}{s^2}$$

$$H = \frac{1}{s+2}$$

(a) Find Y/x

- Char eqn & 1+GH Range of k forstable behavior
- (0)
- when is the 3 yster marginally stable and the fregor (4) oscillation

(a)
$$\frac{\overline{Y}}{\overline{X}} = \frac{G}{1+GH}$$

$$p(s)=0=s^{2}(s+2)+4s+K$$

$$0=s^{3}+2s^{2}+4s+K$$

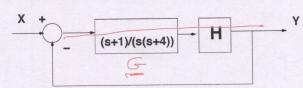
(c)
$$\frac{3}{5^2}$$
 $\frac{1}{2}$ $\frac{4}{2}$ $\frac{5 \text{ table}}{8-k > 0} => 8 > k$
 $\frac{3}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{$

$$25^{2}+8=0=>5=\pm j^{2}$$

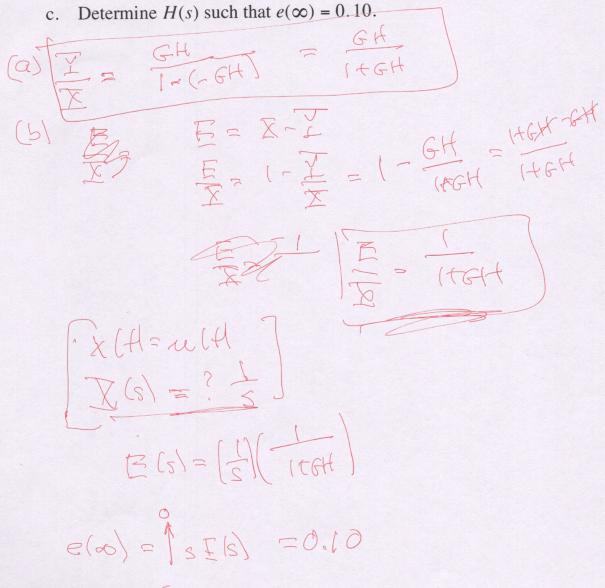
$$P=\frac{2}{2\pi}h_{3}$$

Name		

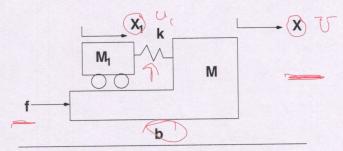
1. Consider the unity feedback system given by the block diagram below.



- If E(s) = X Y evaluate the transfer function $\frac{E}{Y}$.
- Determine E(s) given x(t) = u(t).

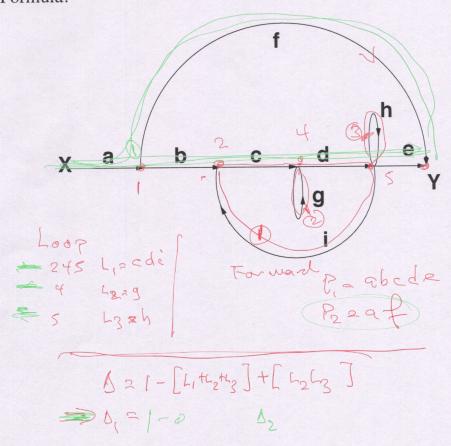


2. Consider the mechanical system where f(t) is the force applied to mass M. The position x and x_1 denote the position of M_1 and M respectively. The variable k is the stiffness of a spring and b is the damper.(note u = dx/dt)



- a. Using the mobility analogy, where force is the through variable and the velocity is the across variable, draw the electromechanical circuit.
- b. Determine the governing equations of motion in ODE form.
- c. Evaluate the transfer function of the Laplace transforms of the velocities $U_1(s)/U(s)$.

3. Given the signal flow, determine the transfer function $\frac{Y}{X}$ using Mason's Gain Formula.



4. Consider the unity negative feedback system where the characteristic equation GH + 1 = 0.

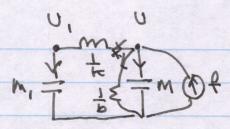
$$GH = \frac{K(s-4)}{(s+1)(s+2)(s+3)}$$

a. Determine the range of values of K where the system is stable.

(a)
$$E = \frac{1}{X}$$
 $1 + H (sH)$
 $S(S+4)$

(b) $E = (\frac{1}{S}) \frac{1}{(1+H\frac{(S+4)}{S(S+4)})}$

(c) $\frac{1}{S} = \frac{1}{S} = \frac{1}{(S+4)} = \frac{1}{(S+4)$



$$\frac{U-U_1}{\frac{S}{K}} = \frac{U_1}{\frac{1}{SM_1}}$$

$$(\dot{u}-\dot{u}_i)k = m_i(\dot{u}_i)$$

(c)
$$(U-U_1)^{-1}k = SM, U_1$$

 $(U-U_1)^{-1}k = S^{-1}M, U_1$
 $(U-U_1)^{-1}k = S^{-1}M, U_1$

$$L_3 = h$$

$$\Delta = 1 - (L_1 + L_2 + L_3) + (L_2 L_3)$$

$$\Delta_1 = 1 - (0)$$

$$\frac{Y}{\overline{k}} = \frac{P_1 \Delta_1}{\Delta} + \frac{P_2 \Delta_2}{\Delta}$$