Generation of Random Variates

VENKATARAMA KRISHNAN

This paper is an invited presentation for the Parametric Technology Corporation, makers of MATHCAD

FEBRUARY 2007

Probability and Random Processes: Generation of Random Variates

by Professor Venkatarama Krishnan
Many good textbooks exist on probability and random processes written at the undergraduate level to the research level. However, there is no one handy and ready book that explains most of the essential topics, such as random variables and most of their frequently used discrete and continuous probability distribution functions, and random processes and their associated properties. A particular feature is the presentation of commonly occurring Fourier transforms where both the time and frequency functions are drawn to scale. Several probability tables with accuracy up to nine decimal places are provided in the appendices for quick reference.

Over 400 figures accompany the more than 300 examples given to help readers visualize how to solve the problems. In many instances, worked examples are solved with more than one approach to illustrate how different probability methodologies can work for the same problem.

This book is of particular value to students and professionals in electrical, computer, and civil engineering, physics, communications, biostatisicians, and applied mathematics.

Mathcad software was exclusively used for (i) drawing complicated composite graphs to scale, (ii) manipulating algebraic equations to obtain solutions, and (iii) constructing probability tables to nine places of decimal accuracy. The ease of use of the Mathcad software enabled that all algebraic calculations were verifiable with it.

You can find more information about the book or purchase it from Wiley at http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471703540, descCd-description.html

Here's an excerpt from the book:

1. Rayleigh Variates from Gaussian Variates by Inverse Transformation

Generation of Gaussian Variates by Box-Mueller transformation

$$
\begin{aligned}
& \underbrace{N}_{i}:=10000 \quad \text { \# Data points } \\
& i:=0 . . \mathrm{N}
\end{aligned}
$$

Creating two independent $\mathrm{U}(0,1) \mathrm{RV} \mathrm{u}$ and v

$$
\mathrm{u}_{\mathrm{i}}:=\operatorname{rnd}(1) \quad \mathrm{v}_{\mathrm{i}}:=\operatorname{rnd}(1)
$$

$$
\operatorname{mean}(u)=0.504 \quad \operatorname{var}(u)=0.085 \quad \operatorname{mean}(v)=0.5 \quad \operatorname{var}(v)=0.083
$$

Transforming u and v to Gaussian RV a and b of nominal 0 mean and nominal unit variance

$$
\begin{array}{lll}
\mathrm{a}_{\mathrm{i}}:=\sqrt{-2 \cdot \ln \left(\mathrm{u}_{\mathrm{i}}\right)} \cdot \cos \left(2 \cdot \pi \cdot \mathrm{v}_{\mathrm{i}}\right) \quad \mathrm{b}_{\mathrm{i}}:=\sqrt{-2 \cdot \ln \left(\mathrm{u}_{\mathrm{i}}\right)} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{v}_{\mathrm{i}}\right) \\
\mu \mathrm{a}:=\operatorname{mean}(\mathrm{a}) & \sigma \mathrm{a}:=\sqrt{\operatorname{var}(\mathrm{a})} & \mu \mathrm{b}:=\operatorname{mean}(\mathrm{b}) \\
\mu \mathrm{a}=-0.014 & \sigma \mathrm{a}=0.995 & \quad \mathrm{~b}:=\sqrt{\operatorname{var}(\mathrm{b})} \\
& \\
& \\
\end{array}
$$

Transforming a and b to x and y with exact 0 mean and unit variance Gaussian RV

$$
\begin{array}{lll}
x_{i}:=\frac{a_{i}-\mu a}{\sigma a} & y_{i}:=\frac{b_{i}-\mu b}{\sigma b} & \\
\operatorname{mean}(x)=0 & \operatorname{var}(x)=1 & \text { mean }(y)=0
\end{array} \quad \operatorname{var}(y)=1 .
$$

Plotting histograms

$$
\begin{array}{lll}
\mathrm{M}:=100 & \text { No of Bins } \\
\mathrm{j}:=0 . . \mathrm{M} & \mathrm{k}:=0 . . \mathrm{M}-1 & \\
\text { int }_{\mathrm{j}}:=\frac{\mathrm{j}}{12.5}-4 & \text { Start plot at } Đ 4 & \Delta:=\frac{1}{12.5} \\
& & \Delta=0.08
\end{array}
$$

Calling histograms

$$
\mathrm{fX} 1:=\operatorname{hist}(\text { int }, \mathrm{x}) \quad \mathrm{fY} 1:=\operatorname{hist}(\mathrm{int}, \mathrm{y})
$$

Standard Gaussian:

$$
\mathrm{z}:=-4,-3.9 . .4
$$

Normaliizing

$$
\mathrm{fX}:=\frac{\mathrm{fX} 1}{\mathrm{C}} \quad \mathrm{fY}:=\frac{\mathrm{fY} 1}{\mathrm{C}} \quad \mathrm{fZ}(\mathrm{z}):=\frac{1}{\sqrt{2 \cdot \pi}} \cdot \exp \left(\frac{-\mathrm{z}^{2}}{2}\right)
$$

Plotting Histograms and Standard Gaussian densities

Obtaining Rayleigh Variates from Gaussian

$$
\mathrm{z}_{\mathrm{i}}:=\sqrt{\left(\mathrm{x}_{\mathrm{i}}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}\right)^{2}}
$$

$\mathrm{w}_{\mathrm{i}}:=\operatorname{atan}\left(\frac{\mathrm{y}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{i}}}\right) \quad$ Forming Rayleigh Variates
Plotting histograms

M $:=200 \quad$ No of Bins $\quad \Delta:=\frac{1}{20} \quad$ Bin Interval $\quad \underset{m}{C}:=N \cdot \Delta$ Normalizing constant
j := 0.. M
$\mathrm{k}:=0 . . \mathrm{M}-1 \quad \Delta=0.05$
$C=500$
inte ${ }_{j}:=\frac{\mathrm{j}}{20}$ Start Rayleigh at $0 \quad$ intr $_{\mathrm{j}}:=\frac{\mathrm{j}}{20}-2 \quad$ Start Phase at Đ2
Calling histograms

$$
\text { True Rayleigh } \quad \text { True Phase }
$$

$$
\mathrm{a}:=\operatorname{hist}(\text { inte }, \mathrm{z}) \quad \mathrm{b}:=\operatorname{hist}(\mathrm{intr}, \mathrm{w}) \quad \mathrm{x}:=0,0.1 . .4 \quad \mathrm{y}:=-2,-1.99 . .2
$$

Normalizing

$$
\mathrm{fZ}:=\frac{\mathrm{a}}{\mathrm{C}} \quad \mathrm{fW}:=\frac{\mathrm{b}}{\mathrm{C}} \quad \mathrm{fR}(\mathrm{x}):=\mathrm{x} \cdot \exp \left(\frac{-\mathrm{x}^{2}}{2}\right) \quad \mathrm{fP}(\mathrm{y}):=\left\lvert\, \begin{aligned}
& \frac{1}{\pi} \text { if } \frac{-\pi}{2}<\mathrm{y} \leq \frac{\pi}{2} \\
& 0 \text { otherwise }
\end{aligned}\right.
$$

Plotting Histograms and True Rayleigh and Phase densities

2. Erlang Variates from Two Exponential Variates from Convolution

Generating Two Independent Exponential Variates from Inverse Transformation
N $\mathrm{N}:=10000 \quad$ \# Data points
i := 1.. N
$\mathrm{u}_{\mathrm{i}}:=\operatorname{rnd}(1) \quad \mathrm{v}_{\mathrm{i}}:=\operatorname{rnd}(1) \quad$ Generating 2 uniformly distributed random variates
$\operatorname{mean}(u)=0.499 \quad \operatorname{mean}(v)=0.501 \operatorname{var}(u)=0.084 \quad \operatorname{var}(\mathrm{v})=0.083$
$x_{i}:=-3 \cdot \ln \left(u_{i}\right) \quad y_{i}:=-3 \cdot \ln \left(\mathrm{v}_{\mathrm{i}}\right) \quad$ Transforming uniform RV to 2 exponential RV
mean $(x)=2.987 \quad \operatorname{var}(x)=8.63 \quad$ mean $(y)=2.985 \quad \operatorname{var}(\mathrm{y})=8.907$

Plotting Histograms and True Exponential Densities

Generating Erlang Variates with Two degrees of freedom

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{i}}:=\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}} \\
& \operatorname{mean}(\mathrm{z})=5.972 \quad \operatorname{var}(\mathrm{z})=17.523
\end{aligned}
$$

$$
\begin{array}{llll}
\mathrm{M}:=200 & \text { No of bins } & \Delta \Delta:=\frac{1}{10} & \text { Bin Interval } \\
\mathrm{j}:=0 . . \mathrm{M} & \mathrm{k}:=0 . . \mathrm{M}-1 & \Delta=0.1 & \mathrm{C}:=\mathrm{N} \cdot \Delta \text { Normalizing constant } \\
& \mathrm{C}=1000
\end{array}
$$

$$
\operatorname{in}_{\mathrm{j}}:=\frac{\mathrm{j}}{10} \quad \text { Making bin intervals }=0.1
$$

Calling Histograms
True Erlang with 2 degrees of freedom $\quad \mathrm{v}:=0,0.1 . .20$

$$
\mathrm{g}_{\mathrm{N}}:=\operatorname{hist}(\mathrm{in}, \mathrm{z}) \quad \mathrm{fZ}:=\frac{\mathrm{g}}{\mathrm{C}} \text { Normalizing } \mathrm{g} \quad \mathrm{fV}(\mathrm{v}):=\left(\frac{1}{3}\right)^{2} \cdot \mathrm{v} \cdot \exp \left(\frac{-\mathrm{v}}{3}\right)
$$

$$
\begin{aligned}
& \mathrm{M}:=100 \quad \text { No of Bins } \quad \quad \Delta \mathrm{Am}:=\frac{1}{10} \text { Bin Interval } \quad \mathrm{C}:=\mathrm{N} \cdot \Delta \quad \text { Normalizing constant } \\
& \mathrm{j}:=0 . . \mathrm{M} \quad \mathrm{k}:=0 . . \mathrm{M}-1 \quad \Delta=0.1 \quad \mathrm{C}=1000 \\
& \operatorname{inta}_{\mathrm{j}}:=\frac{\mathrm{j}}{10} \text { Start at } 0 \quad \quad \operatorname{intb}_{\mathrm{j}}:=\frac{\mathrm{j}}{10} \quad \text { Star at } 0 \quad \text { True Exponential Density } \quad \mathrm{z}:=0,0.1 . .10 \\
& \underset{\mathrm{~m}}{\mathrm{a}}:=\operatorname{hist}(\text { inta }, \mathrm{x}) \quad \underset{\mathrm{m}}{\mathrm{~b}}:=\operatorname{hist}(\mathrm{intb}, \mathrm{y}) \quad \text { Calling histograms } \quad \underset{\mathrm{mZ}}{\mathrm{fZ}}(\mathrm{z}):=\frac{1}{3} \cdot \exp \left(\frac{-1}{3} \cdot \mathrm{z}\right) \\
& \text { fX }:=\frac{\mathrm{a}}{\mathrm{C}} \quad \text { fY }:=\frac{\mathrm{b}}{\mathrm{C}} \quad \text { Normalizing }
\end{aligned}
$$

Plotting Histograms and True Erlang density

3. Beta Distribution Variates from Acceptance Rejection

Plotting Beta density
For Integer values of α and β, with $\alpha:=3$ and $\beta:=6, \mathrm{fB}(\mathrm{x})$ is given by,

General Beta density

$$
\begin{aligned}
& \mathrm{fB}(\mathrm{x}):=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \cdot \mathrm{x}^{\alpha-1} \cdot(1-\mathrm{x})^{\beta-1} \\
& \mathrm{fB}(\mathrm{x}):=168 \cdot \mathrm{x}^{2} \cdot(1-\mathrm{x})^{5}
\end{aligned}
$$

Maximum Value of Beta density occurs at $\mathrm{x} 0:=\frac{336}{1176}=0.2857143$ and
the maximum value $\mathrm{fB}(\mathrm{x} 0)=2.549958=\frac{300000}{117649}$

Plot of Beta Density

$$
\mathrm{x}:=0,0.01 . .1
$$

$x 0=0.28571$

$$
\mathrm{fB}(\mathrm{x} 0)=2.54996
$$

Plot of Beta Density $\beta(x, 3,6)$

Acceptance Rejection Method of generating Beta Variates

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{N}}:=10000 \quad \text { Number of Data Points } \\
& \text { i := 0.. } \mathrm{N} \\
& y_{i}:=\operatorname{rnd}(1) \quad u_{i}:=\operatorname{rnd}(1) \quad \text { Generating } 2 \text { Uniform Random Variates } \\
& \text { mean }(y)=0.504 \quad \operatorname{var}(y)=0.084 \quad \text { mean }(u)=0.497 \quad \operatorname{var}(u)=0.083 \\
& \mathrm{~g}(\alpha):=2.55 \quad \text { Maximum value of } \mathrm{fB}(\mathrm{x})=\mathrm{fB}(\mathrm{x} 0)=2.55 \text {. } \\
& \text { Set Bounding Function } g(\alpha)=2.55>f B(x) \text {. } \\
& x_{i}:=\left\lvert\, \begin{array}{l}
y_{i} \text { if } u_{i} \leq \frac{168 \cdot\left(y_{i}\right)^{2} \cdot\left(1-y_{i}\right)^{5}}{2.55} \text { Setting the logic for accepting points } \\
0 \text { otherwise }
\end{array}\right. \\
& \operatorname{mean}(\mathrm{x})=0.13 \quad \operatorname{var}(\mathrm{x})=0.036 \\
& \mathrm{~W}:=\operatorname{sort}(\mathrm{x}) \quad \text { Sorting } \mathrm{x} \text { for eliminating intermediate } 0 \text { values } \\
& \mathrm{w}_{6077}=0 \quad 6093 \text { points are not accepted since they are } 0 \\
& \mathrm{w}_{6078}=0 \quad \text { Finding number of accepted points } 10000-6077=3923 \\
& \mathrm{w}_{10000}=0.833 \quad 3913 \text { points go to make up } \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

$\mathrm{M}:=100$	No of bins	$\Delta \mathrm{x}:=\frac{1}{\mathrm{M}}$	$\Delta \mathrm{x}=0.01 \quad$ Bin Interval
$\mathrm{j}:=0 . . \mathrm{M}$	$\mathrm{k}:=1 . . \mathrm{M}-1$	$\mathrm{C}:=3923 \cdot \Delta \mathrm{x}$	$\mathrm{C}=39.23 \quad$ Set Normalization Constant
$\mathrm{in}_{\mathrm{j}}:=\frac{\mathrm{j}}{\mathrm{M}}$	Starting at 0	True Beta Density	$\mathrm{z}:=0,0.01 . .1$
$\mathrm{~b}:=\operatorname{hist}(\mathrm{in}, \mathrm{w})$	Calling Histogram Routine	$\mathrm{f}(\mathrm{x}):=168 \cdot \mathrm{z}^{2} \cdot(1-\mathrm{z})^{5}$	
$\mathrm{fX}:=\frac{\mathrm{b}}{\mathrm{C}}$	Normalizing g	$\frac{\mathrm{N}}{\mathrm{g}(\alpha)}=3921.569$	Accepted points ~ 3923

Plotting Histogram and True Beta Density

$$
N-\frac{N}{g(\alpha)}=6078.431 \text { Rejected Points } \sim 6077
$$

