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ABSTRACT 

A Bayesian reconstruction algorithm of transmission tomographic images is 
presented. The reconstruction is based on maximum aposteriori (MAP) estimation using 
the Expectation Maximization (EM) algorithm. The Gibbs prior with sigmoidal potential 
function that smoothes out high differences in neighboring pixel values while retaining 
sharp-edged features of images is employed. The Gibbs prior improves the image quality 
as well as the convergence properties of the EM algorithm. The Bayesian reconstruction 
problem itself is solved through the One-Step-Late Expectation-Maximization algorithm 
(EM-OSL) proposed by Green. Approximations are introduced to make the problem 
more tractable for parallel computation. Computer simulated phantoms are used in this 
study. Images reconstructed from this algorithm are compared to those reconstructed 
from currently available reconstruction algorithms in terms of image quality and 
convergence rate. The reconstruction algorithm works quite well for low-photon-count 
and low-contrast cases in which the widely used convolution backprojection algorithm 
performs rather poorly. 
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INTRODUCTION 

In transmission tomography (TT) the acquired projection data contains high 
statistical variations due to limited dose of radiation introduced in patients. When this is 
compounded with the presence of high contrast objects inside low contrast ones, many 
practical problems arise. Conventional convolution back projection and other Fourier-
based methods fail to produce acceptable reconstructions and the resulting images are 
usually plagued by various types of artifacts. Transmission tomography models for 
reconstruction of images have to take into account the statistical nature of the problem. 
Statistical variations and other physical phenomena of the image reconstruction problem 
can be incorporated in a stochastic model. The application of the well-established theory 
of maximum likelihood estimation to image reconstruction problem was recognized by 
Rockmore and Macovski [1,2]. An alternative to the maximum likelihood approach is 
provided by Dempster et. al [3] with a general iterative method known as the expectation 
maximization (EM) algorithm. The relevance of the EM algorithm to maximum 
likelihood image reconstruction was noticed by Shepp and Vardi [4], who applied it to a 
stochastic model of positron emission tomography (PET), and independently by Lange 
and Carson [5] who applied it to general models of emission and transmission 
tomography. However, all these methods have to address the problems of computational 
complexity and storage  

The initial optimism of the EM method of reconstruction in emission tomography 
has been tempered by the grainy, speckled appearance of the reconstructed images. This 
graininess is simply a manifestation of low correlation between parameter estimates for 
neighboring pixels. An intrinsically satisfying solution is to incorporate  some 
smoothness criterion in the reconstruction process itself.  

In emission tomography, this perspective has been advocated by Geman and McClure 
[6,7], Hebert and Leahy [8], and Green [9], who build on previous works of Geman and 
Geman [10], and Besag [11]. In particular Geman and McClure [6,7] introduce Gibbs 
priors with nearest neighbor interactions. Green [9] devises an approximate EM 
algorithm incorporating nearest neighbor interactions with the One-Step-Late 
Expectation-Maximization (EM-OSL) algorithm. Lange [12] has demonstrated the 
conditions under which EM-OSL algorithm actually converges to the unique maximum 
posterior point in image space for both emission and transmission cases. 
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In this report the Gibbs prior with sigmoidal potential function is developed that 
applies the EM-OSL scheme of Green [9] to the transmission algorithm proposed by 
Lange [12]. In simplifying the resultant transcendental equation three terms have been 
used in the series expansion rather than two in Lange. The solution of the resulting 
quadratic equation yields more accurate results. The sigmoidal potential function 
smoothes out high differences in neighboring pixel values while retaining sharp-edged 
features of images. 

Section II discusses the model in detail with the underlying assumptions, the 
derivation of the algorithms and the simplifying approximations involved. Section III 
discusses the computer simulation of the algorithm with implementations of the various 
parameters. In Section IV the results from other algorithms, such as convolution 
backprojection, EM algorithm of Lange and Carson [5], Green [9] are presented. They 
are compared with regard to convergence properties, image quality in terms of visual 
appeal,  analytical  criteria, complexity of algorithms and susceptibility to low radiation 
flux. In Section V, some discussion of results are presented. 

. 
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THE MODEL AND THE ALGORITHM 

Before mentioning in detail about the algorithm, some of the notations are defined in 
Figure 1. 

i projection subscript 

j ordered pixel-subscript for each projection path i starting from the furthest 

pixel from the detector i 
Ii set of (m - 1) pixels contributing to the projection i 

Jj set of projections to which pixel j contributes 

Yi random variable for detected photons for projection i 

Xij random variable for photons from projection i entering pixel j 

Xij random variable for photons from projection i leaving pixel j, or entering 

pixel j+1, that is, Xij=Xij+1. 

Uj random variable for attenuation coefficient of pixel j 

mj realization of Uj  

lij path length of projection i through pixel j 

 

Figure 1 : Model of Transmission Computed Tomographic System 



 

 

7 

Corresponding to each projection i, the source photons are assumed to travel along a 
thin path on the way to the detector. This path cuts through a set Ii of (m -1)† pixels 

ordered by the index j, that is, pixel j=1 is the nearest pixel to the source and pixel j=m-1 
is the last pixel along the path. The attenuation of pixel j is a random variable Uj taking 
the value mj and the length of the path inside pixel j is lij. Photons traveling along path i 
are counted as xij at the entrance to pixel j and as xij=xij+1at the exit with xij-xij photons 
getting attenuated by pixel j. The number of photons xim leaving the last pixel (m-1) is 
the same as the number of photons yi getting detected by the detector i, or, Xim= Yi. The 
attenuation coefficients {mj} have to be estimated from the observed photon count xim = 
yi.  

The random variable Xi1 of photons leaving the source at projection i is assumed to 

be Poisson distributed as, 

  P X
i1

  =  
e

-di d
i

xi1

x
i1

!
 …(1) 

where di = E{Xi1} is the mean number of photons leaving the source at projection i.  

The probability that a photon entering pixel j along path i will survive the attenuation 
at pixel j, conditioned on the attenuation coefficient Uj = mj, is assumed to be pj = e-mjlij. 
The probability that xij photons will emanate from pixel j conditioned on xij photons 

entering pixel j conditioned on the attenuation coefficient Uj = mj, can be characterized 
by a binomial distribution. 

 P Xij=xij|Xij=xij|Uj=µj   =  
xij

xij

 e-µj lij
xij

 1- e-µj lij
xij-xij

 …(2) 

Using eq.(1) the conditional mean value, gij = E{Xij|m1,m2,…,mj-1} of the photons, 

xij entering pixel j can be given by  

 
!ij  =  di  e-µ1 li1  e-µ2 li2   e-µj-1 lij-1  = di e

- µk lik!
k=1

j-1

 

  …(3) 

                                                
† Subscript i in mi has been omitted for simplifying notation 
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and similarly the conditional mean value, gim = E{Xim|m1,m2,…,mm-1} of the detected 

photons xim is given by !im = di e
- µk lik!

k=1

m-1

 

. The ratio 
gim
gij

   can be expressed as: 

 
!im
!ij

 = 
di e

- µk lik!
k=1

m-1

di e
- µk lik!

k=1

j-1
 = e

- µk lik!
k=j

m-1

 …(4) 

The input random variable Xij to the pixel j conditioned on {m1,m2,…,mj-1} is again 
Poisson-distributed with mean gij and the distribution is given by 

 P Xij | uj- 1   =  P Xij | µ1,  µ2, …,  µj-1   =  
e-! ij !ij

xij

xij!
 …(5) 

where the vector uj-1 represents the attenuation coefficients {m1, m2 …  mj-1} up to the 
jth pixel. The probability of the detected photons Xim conditioned on Xij photons entering 

pixel j can again be given by a binomial distribution 

 P Xim|Xij|um-1   =  
xij

xim

 e
- µkl ik!

k=j

m-1 xim

 1- e
- µkl ik!

k=j

m-1 xij- xim

  

Using the ratio 
gim
gij

    from eq.(4), the above equation can be simplified to yield 

 P Xim|Xij|um-1   =  
xij

xim

 
!im
!ij

xim

 1- 
!im
!ij

xij- xim

 …(6) 

To find the probability of Xij conditioned on the detected photons Xim = xim = yi and 
the attenuation coefficients um-1 = {m1, m2 …  mm-1}, Bayes’ theorem as stated by,  

 P X | Y  = 
P Y | X  P X

P Y
 

is used to express P{Xij | Xim | um-1} as 
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P Xij|Xim|um-1   =  
P Xim | Xij | um-1  P Xij | um-1

P Xim | um-1

 = 
xij!

xim!(xij-xim)!
 
!im
!ij

xim

 1- 
!im
!ij

xij- xim

 
e-! ij !ij

xij

xij!
 

xim!

e-! im !im
xim

= 1
(xij-xim)!

 !ij - !im
xij- xim  e- !ij-! im

  …(7) 

The mean of the photons Xij conditioned on the observed detected photons Xim = xim 

= yi and attenuation coefficients um-1 can be obtained from by taking the expected value 
of eq. (7). 

 

E Xij | Xim=Yi=xim | um-1   =  
xij

(xij-xim)!
 !ij - !im

xij- xim  e- !ij-! im!
xij=0

"

=  
xij+xim

xij!
 !ij - !im

xij e- !ij-! im!
xij=0

"

=  !ij - !im + xim = !ij - !im + yi # Nij

 …(8) 

Defining a vector Xi = {Xim, Xim-1, … , Xi1}T, the probability, P{Xi| Yi= Xim= xim | 
um-1} of Xi conditioned on the observations Yi = Xim = xim and the attenuation 
coefficient vector um-1 can be evaluated by using the Markov property of Xi. 

P Xi| Yi|um-1  = P Xi| Yi=Xim=xim|um-1

=  P Xim, Xim-1, , Xi1|Yi=Xim=xim|um-1  

=  P Xim|Xim-1|um-1 P Xim-1|Xim-2|um-2   P Xi2|Xi1|u1 P Xi1

=  
xik

xik+1
 e-µkl ik

xik+1
 1-e-µkl ik

xik- xik+1

!
k=1

m-1

 
e-di di

xi1

xi1!

 …(9) 

Defining vectors X = {X1, X2, … , Xi, … }T, Y = {Y1, Y2, … , Yi, … }T, U =  {the 
set of attenuation coefficients um-1 for all projections i} and the fact that xik+1 = xik, 
and summing eq.(9) over all projections i the following conditional probability can be 
written. 
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P X|Y |U  = 
xik

xik

 e-µkl ik
xik

 1-e-µkl ik
xik- xik

!
k

!
i

 
e-di di

xi1

xi1!
 …(10) 

and lnP X|Y |U  can be written as, 

 lnP X |Y  | U  = xikln e-µklk  + (xik-xik)ln 1-e-µklk  + K!
k

!
i

 …(11) 

where the constant K represents the logarithm of terms independent of mk.  

The estimate of the attenuation matrix U is obtained by maximizing the aposteriori 
probability P U|X|Y . Using Bayes' theorem the likelihood function P U|X|Y  is 

given by: 

 P U|X|Y  = 
P X|Y |U P U

P X|Y
  …(12) 

and the corresponding log-likelihood function is: 

 lnP U|X|Y  = lnP X|Y |U  + lnP U  -  lnP X|Y  …(13) 

The maximum likelihood estimator for U is obtained by assuming that the attenuation 
coefficients {mk} are equiprobable in which case P{U} is constant. Since P X|Y  is 

independent of U, maximizing P U|X|Y  amounts to maximizing the log-likelihood 

function lnP X|Y |U  given by eq.(11). Since eq.(11) contains the unknown values of 

random variables Xik and Xik, direct maximization of eq.(11) will not give meaningful 
results. Hence the expected value of eq.(11) is to be maximized with respect to {mk}. 
Since the conditional expectations of Xik and Xik are functions of {mk}, an iterative 
method of maximizing eq.(11) has to be developed.  

The projection matrix Y is a function g(X) where g(.) is a many to one mapping from 
the space of X to the space of Y. Hence the iterative solution to the maximum likelihood 
estimation problem can proceed in alternating steps. of expectation and maximization. 
First the expected value E lnP X|Y |U |U(n)  is taken conditioned on the current 

estimate U(n). This expected value is maximized with respect to U to yield an updated 
estimate U(n+1). The updated expected value E lnP X|Y |U |U(n+1)   is maximized and 
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the process repeated. According to Dempster [3] the objective function E lnP X|Y |U  

will increase in value at each iteration with 
E lnP X|Y |U |U(n+1)

 ! E lnP X|Y |U |U(n) . The equality holds only when the 

maximum likelihood solution Umax is reached and the expected value is 

E lnP X|Y |Umax . 

Expectation Step 

Defining U(n) as the estimate of the attenuation matrix U at the nth iteration, the 
expectation of lnP X |Y  | U  at the (n+1)st iteration, on the conditionally expected 

values of Xik and Xik at the nth iteration, can be written as, 

 E lnP X|Y |U |U(n)
 = Nik ln e-µkl ik  + Nik-Nik  ln 1-e-µkl ik!

k

 + K1!
i

 …(14) 

where K1 is yet another constant independent of {mk}. Nik and N
ik

 conditioned on Y and 

U(n) are obtained from eq.(8) as, 

 
Nik = E Xik |Yi |  U (n)  = !i k - !im + yim

Nik = Nik+1 = E Xik |Yi |  U (n)  = !ik+1 - !im + yim 
 …(15) 

Maximization Step 

Since Nik and Nik are known E lnP X|Y |U |U(n)  can now be maximized by 

differentiating eq. (14) with respect to mk and setting it equal to 0 

 
!E lnP X|Y |U |Un

!µk

  =  -Niklik + Nik-Nik  
lik

eµkl ik -1
!
i"Jk

 = 0 …(16) 

Eq. (16) is a transcendental equation that can be solved by approximating the 
exponential term by using the first three terms in the series expansion, 

 1

eµkl ik -1

 = 1

µklik

 - 1

2
 + 1

12
 µklik + o µklik

 3  …(17) 
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EM Algorithm  

Simplification of eq. (16) using eq. (17) yields  

 1

12
Nik-  Nik  lik

2
!
i"Jk

µk
2 -  1

2
Nik-  Nik  lik!

i"Jk

µk + Nik-  Nik!
i"Jk

=0

               A                                 B                           C                        

 

or,  Aµ
k

2
  –  Bµk  +  C = 0  for all k …(18) 

solving for mk in the above quadratic yields the (n+1)st estimate µ
k

(n+1). µ
k

(n+1)
  =  

B ± B
2
 - 4AC

2A
 
 µk

(n)

     for all k …(19) 

where the coefficients A, B and C are dependent on µ
k

(n). The smaller root has to be 
chosen as the solution in this algorithm so that for µklik < 6 this solution will always fall 
inside the solution bounds established by Lange [5] for all values of k and i. 

Eq.(19) is the desired Expectation-Maximization (EM) algorithm 

EM-OSL Algorithm 

Eq.(19) represents the maximum likelihood solution with equiprobable attenuation 
coefficients µ

k

(n+1). This solution can be considerably refined by using prior information 

P{U} about the attenuation coefficients U, yielding the maximum aposteriori solution. In 
the expected value of eq.(13) shown below, 

 E lnP U|X|Y  = E  lnP X|Y |U  +E lnP U  -  E lnP X|Y   

 
the maximization step  using the same iteration schemes as used in eq.(16) becomes 
 
!E lnP U|X|Y |U(n)

!µk

 = 
!E ln P X|Y |U |U(n)

!µk

  - 
!ln P U

!µk

 = 0

=  -Niklik + Nik-Nik  
lik

1-e-µkl ik
!
i!Jk

 - 
!ln P U

!µk

  = 0

. ...(20) 

Using the series approximation of eq.(17) in eq.(20) leads to the equation, 
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1

12
Nik-  Nik  lik

2
!
i"Jk

µk
2 -  1

2
Nik-  Nik  lik!

i"Jk

 - 
!lnP (U)

!µk

µk + Nik-  Nik!
i"Jk

=0

  ...(21) 

Using the definitions for A, B and C as given in eq.(17), eq.(21) can rewritten as, 

 Aµk
2
 - B - 

!lnP (U)

!µk

 µk + C = 0    for all k …(22) 

Solving for mk in the above quadratic yields the result 

 µ
k

(n+1)
  =  

B - 
!lnP (U)

!µ
k

(n+1)
 ± B - 

!lnP (U)

!µ
k

(n+1)

2

-  4AC

2A
 
 µk

(n)
   

The above equation can not be solved since it involves the derivative of the log-prior 
distribution at µ

k

(n+1). Green [9] resolves the problem by using the derivative at µ
k

(n) 

yielding the EM one-step-late algorithm (EM-OSL). In addition a parameter b is 
introduced in the derivative of the prior P(U) to control the influence of the prior on the 
algorithm. The estimate µ

k

(n+1) at the (n+1)st iteration for the EM-OSL algorithm is,  

 µ
k

(n+1)
  =  

B - ! 
!lnP (U)

!µ
k

(n)
 ± B - ! 

!lnP (U)

!µ
k

(n)

2

-  4AC

2A
   

 µ
k

(n)
 …(23) 

Again the smaller root of eq.(23) is used in this iterative algorithm for the same 
convergence reasons as in eq.(19). The optimum value of b will depend upon both the 
characteristics of the image and the prior used. If b=0 eq.(23) is the EM algorithm of 
eq.(19). 

Prior Distributions P{U} 

The prior distribution P{U} or P{u} in eq.(23) has to be carefully chosen. From 
consideration of Markovian fields a proper choice is the exponential distribution given by 
P{u} = 1

z
 e–V(u), where z ! e- V u  du

u " 0

 < ! is a normalization constraint that V(u) 

has to satisfy  The potential function V{u} is designed to penalize large differences in 
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estimated parameters for neighboring pixels. The constraints on the potential function 
have been discussed by Lange [12}. In this particular application a first order 
neighborhood interaction of the form 

 V µ  ! wjk v µj - µk!
j, k  " N

, ...(24) 

is considered where the weighting functions wjk for a first order Markovian field are 
defined as 

    

wjk = 

   1      : orthogonal neighbor

1

2
     : diagonal neighbor  

0      : otherwise             
 

In this paper two potential functions v(r) are considered. The first is a sigmoidal 
function with a positive parameter x given by,  

 
 v(r) = 2

1 + e-!r2
 - 1 …(25) 

and the second is a logarithm of hyperbolic cosine with a parameter x given by  
 

 v(r) = lncosh(!r) = ln e
!r + e-!r

2
 …(26) 

 
The parameter x = 0 in both of these potential functions amounts to a straight EM 

algorithm without any prior. 
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Figure 2 : Sigmoidal Functions and Their First Derivatives 

Figure 2 shows the sigmoidal functions and their derivatives used in this study. The 
choice of the sigmoidal function with an adjustable parameter x (varying between 2000 
and 6000) makes it possible to smooth out speckles in reconstructed images while 
retaining sharp edges. This fact can be demonstrated analytically from the series 
expansion of eq.(23). 

Defining B1 = B - ! 
!lnP (U)

!µ
k

(n)
  eq.(23) can be expressed as 
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µ
k

n+1
  =  

B1

2A
 - 

B1

2
- 4AC

2A

=  C

B1

 1 + AC

B1

2
 + 2A

2
C

2

B1

4
 + 5A

3
C

3

B1

6
+ ...

 
 

 

In this investigation AC

B1

2
  < 1 and the first order approximation for µ

k

n+1 can be given by 

 

µk
n+1 ! C

B1

 = 

Nik-Nik"
i#Jk

1
2

Nik+Nik  lik"
i#Jk

 - $ 
!lnP (U)

!µ
k

(n)
  

 µk
n

=  

Nik-Nik"
i#Jk

1
2

Nik+Nik  lik"
i#Jk

 + $ wij 
!v(µk

(n)
 - µj

(n))

!µ
k

(n)
  

 µk
n

!
j#N

                                   N % Neighboring

                                         pixels

 
    for all k …(27) 

The denominator of eq.(27) involves the sum of two terms, one of which is the 
derivative of the potential function. This sum directly determines the penalty imposed on 
successive iterations in this algorithm. The relatively higher intensity of pixel k than 
those of its nearest neighbors is reflected by a positive value of the derivative and hence a 
larger value of the denominator. As a consequence, the penalty for the next iteration of 
µ
k

n+1 is higher resulting in a lower estimate for the intensity of pixel k. On the other hand, 
a lower intensity of pixel k than those of its nearest neighbors results in a higher estimate 
of the intensity of pixel k. The derivative of a sigmoidal function exhibits a band (Figure 
2) of high (0-0.05) and low (-0.05-0) values dependent on the parameter x. Because of 
this characteristic, the penalty imposed is effective only when intensity differences fall 
into this band. As a consequence the unusually high differences in intensity such as 
sharp-edged features of the image are preserved while the speckled appearance of the 
image due to Poisson noise is smoothed. As shown in Figure 2 the degree of edge-
separation needed can be adjusted with the parameter x for any particular image 
reconstruction. 
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The derivative of the lncosh function on the other hand monotonically increases. As a 
consequence, there is no discrimination between edges and artifacts resulting in smoothed 
edges.  

COMPUTER SIMULATION 

A computer simulation was performed to investigate the quality of reconstructed 
images using the sigmoid potential function and to compare it with other reconstructed 
images. The simulation block diagram is shown in Figure 3. 

.

Phantom Pathlength
Matrix

Poisson
Randomizer

Calculate
# Detected

PhotonsU

um - 1 Yi
Projection

Matrix
{Y}

µklik∑
k=1

m-1

di e
- µklik∑
k=1

m-1

CBP

EM

EM-OSL
lncosh

EM-OSL
Sigmoid

IMAGE 1

IMAGE 2

IMAGE 3

IMAGE 4

Projection
Matrix
{Y}

Yi
um-1
CBP

um-1
EM

um-1
LC

um-1
SIG

Figure 3: Simulation diagram 
 
A phantom was created with parameters as shown in Figure 4. The numerical values 

show the uniform attenuation coefficients in that region.  
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.225
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Figure 4: Phantom Parameters 

This particular phantom was chosen so that it has a fairly complicated detail including 
a high contrast outer shielding ring. In the usual reconstructions, especially from 
projections with low number of photon counts, this shielding ring obscures the delicate 
features present inside it.  The intention in this study was to assess how well the 
sigmoidal potential function handled the presence of the shielding ring. The photon 
source was assumed to emit a relatively low number of di = 104 expected number of 

photons per projection path i. The phantom was divided into cells of 64¥64 pixels. 

A major problem was in the implementation of the coefficient matrix li j  that has a 
size of 642 ¥ 642 . li j  is a collection of lengths of the path along the projection path i 

inside pixel j. This is a highly sparse matrix, as each path i passes through (Figure 1) only 
a small fraction of the total number of pixels in the image and each pixel has only a small 
fraction of the total number of paths passing through it. Furthermore, computation for 
each projection path i requires access to all corresponding li j. Even though only a fraction 

of elements of this matrix is nonzero, calculation of all of them on a fly for each iteration 
would still require an excessive amount of computation. To reduce this computational 
burden the path lengths are calculated only once and stored in a form that is easily 
accessible. This stored data is defined as the ‘Pathlength Matrix.’ 

 A semi-sparse matrix scheme is devised to handle the problem of computational 
burden. Two sets of path coefficients are stored. The first set is accessible in the 'forward' 
direction, that is, given the path i all coefficients associated with it are stored. This is 
defined as the ‘Forward Pathlength Matrix.’ The second set is accessible in the 
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'backward' direction, that is, given pixel j all coefficients associated with it are stored. 
This is defined as the ‘Backward Pathlength Matrix.’ 

 Forward Pathlength Matrix is used to generate noise-free projection data. This 
matrix in conjunction with a Poisson random number generator routine is used to 
generate Poisson-randomized data. Poisson random number is generated from a given 
intensity parameter and acquisition time. This random number is equal to a total number 
of events which have exponentially distributed interarrival times with mean equal to the 
given intensity parameter d occurring during the acquisition time. Exponential random 
variables are generated from a set of random variables uniformly distributed over [0,1] by 
probability transformation.  

 The data from the Poisson randomizer is the projection matrix Y.  From this 
projection matrix Y four different types of reconstruction images are generated. The first 
of the reconstructed images used the conventional deterministic convolution 
backprojection algorithm. In the other three images using the EM algorithm, a 
combination of Forward and Backward Pathlength matrices are used in reconstructing the 
image. Nik and N

ik
 defined in eq.(15) are computed by using the Forward Pathlength 

matrix. The computed Nik and N
ik

 are then in turn utilized to determine the updated 

estimated attenuation coefficient µk
n+1 in eq.(19) and (23) using the Backward Pathlength 

matrix. Three images are reconstructed using 1) conventional EM algorithm proposed by 
Lange [12], 2) the Modified EM with lncosh potential function proposed by Green [9], 
and 3) the Modified EM with sigmoidal potential function. Performances of these 
algorithms and their reconstructions are then compared. The criteria used for comparison 
are: 
  • Convergence and convergence rate 
  • Image quality (primarily visual tempered with  analytical criteria) 
  • Complexity (actual execution time) 

 Noise-free projection data was generated over 64 equally spaced projection angles 
between 0 and 180° using parallel beam scanner geometry. Each projection consisted of 
64 equally spaced rays over the field of view of 30 cm. in length.  Poisson-randomized 
projection data was generated by using the previous noise-free data as mean value. The 
Poisson random number generator algorithm as described previously is used for this 
purpose. 
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The CBP method was implemented on an Apollo Domain series 3500 system. All 
EM-based algorithms were implemented on the Alliant FX-2800 series system which has 
both concurrent and vector processing capability. Each iteration takes about 18 seconds. 
This may be slow but is not deemed a serious drawback because the speed of iteration 
can be considerably enhanced with a multiprocessor machine. The gray-scale images 
presented herein are windowed between 0.150 cm-1 and 0.275 cm-1 for better visual 
contrast.  

 
(a) Phantom 

  

  (b) CBP  (c) EM 

  
 
  (d) LnCosh (e) Sigmoid 

Figure 5: Phantom and Reconstructed Images 
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RESULTS AND CONCLUSIONS 

Figure 5 shows (a) the phantom image, (b) reconstruction with the convolution back 
projection (CBP), (c) reconstruction with the conventional EM (d) reconstruction with 
EM-OSL using lncosh potential function, and (e) reconstruction with EM-OSL using 
sigmoidal potential function. Cross-sectional histograms of reconstructed images 
sectioned vertically through the center with cross-sectional histogram of the phantom 
superimposed are shown in Figure 6. In Figure 7, the progression of RMS errors between 
the reconstructed images and the phantom as the iteration proceeds are drawn for CBP, 
EM, lncosh and sigmoid realizations. 

 The conventional convolution back projection (CBP) reconstruction (Figure 5.b) 
achievable in a single step is the quickest in execution time because of its deterministic 
nature. However, it is the poorest reconstruction among all the four. This poor 
performance is caused by factors such as intrinsic statistical variation of data, low photon 
counts, low angular and spatial sampling rates and shielding ring effects. The cross 
sectional histogram (Figure 6.a) shows well rounded edges and the RMS error (Figure 7) 
is quite high. 
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  (a) CBP Image (b) EM Image 
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 (c) EM-OSL Lncosh Image (d) EM-OSL Sigmoidal Image 

Figure 6: Cross Sectional Histograms 

By using a statistical model, better results are obtained for the EM algorithms 
(Figures 5.c,d,e). However, the straight EM algorithm (Figure 5.c) has a rather grainy and 
speckled appearance. This graininess is simply a manifestation of low correlation 
between parameter estimates for neighboring pixels. The cross sectional histogram 
(Figure 6.b) shows badly jagged edges and the RMS error (Figure 7) remains fairly 
constant after about 40 iterations. There is also the problem that this algorithm tends to 
diverge (Rajeevan [13]) after a certain number of iterations and stopping rules are to be 
devised for the optimum number of iterations. 

To smooth the speckles in the EM procedure, the algorithm was modified using 
Gibbs’ prior with a lncosh potential function to penalize large differences between 
adjacent pixels. The lncosh reconstruction (Figure 5.d) shows a smoother result but the 
cross-sectional histogram (Figure 6.c) indicates rounded edges. The RMS error curve 
(Figure 7) is also better than before but tends to saturate at a little higher level. The 
difficulty stems from the fact that the lncosh potential function tends to oversmooth the 
image resulting in the loss of sharp-edged features.  
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Figure 7: Convergence Rates 

To overcome the oversmoothing difficulty a sigmoidal potential function that 
preserves sharp edges while retaining the smoothing effect is utilized. Convergence 
curves for increasing iterations were plotted using log-likelihood function and RMS error 
for different values of b and x. b was varied between 0 and 0.0004 and x was varied 
between 0 and 7000. From these curves the optimum vaue of b was 0.0002 and the 
optimum value of x was 5000. With these values, the reconstructed image (Figure 5.e) is 
superior in quality to the rest. The image is visually very close to the phantom. The cross-
sectional histogram (Figure 6.d) also indicates a better edge performance. The RMS error 
curve monotonically decreases as the iteration proceeds and at the120th iteration is 
almost negligible. Thus, the modified EM algorithm with the sigmoidal potential function 
clearly performs better with regard to accuracy and smoothness of reconstruction. 

DISCUSSION OF RESULTS 

In comparing reconstructions in medical imaging visual accuracy is the most 
important. The analytical criteria like the RMS error is secondary. The RMS error curves 
(Figure 7) indicate a big difference between the CBP reconstruction and the EM 
reconstructions. But visual inspection of the reconstructed images do not show such a big 
discrepancy. On the other hand the error curves for EM and lncosh reconstructions are 
not that far apart; but visually the differences are quite discernible. The sigmoidal 
reconstruction is more appealing both visually and analytically.  
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The error curves also show that during the first 30 iterations all the EM algorithms 
converge almost linearly at the same rate. But after that, their convergence become 
sublinear and their graphs begin to fan-out separately. Among all the four convergence 
rates presented the sigmoidal algorithm again performs better. 

The speed of each iteration is dependent on the number of processors in the 
computer and can be considerably enhanced with more processors. The structure of this 
algorithm is more conducive to a multiprocessor machine. 

The convergence rates and the quality of reconstruction indicate the decided 
superiority of this modified EM algorithm using sigmoidal potential functions. Further 
studies are in progress for SPECT and missing data reconstructions. 
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