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Abstract—Modeling from the perspectives of software en-
gineering and systems engineering have co-evolved over the
last two decades as orthogonal approaches. Given the central
role of software in modern cyber-physical systems and the
increasing adoption of digital engineering practices, there is now
significant opportunity for collaborative design among system
users, software developers, and systems engineers. Model-based
systems engineering and systems modeling languages enable
seamless cross-domain connectivity for design, simulation, and
analysis of emerging technologies such as Augmented Reality
(AR). This paper presents a co-design process for extending
the capability of an existing AR application referred to as a
No-Code AR Systems (NCARS) framework. NCARS enables
content developed by multi-domain authors to be deployed on
AR devices through a software layer that bridges the content
to the game engine that drives the AR system. Utilizing a
software dependency diagram of the Annotation function, an
existing MBSE model of the AR system is extended to include
the structure and behavior of relevant software components. New
user requirements for tracking items in motion in the user’s
physical environment with virtual annotations in the augmented
space are collaboratively designed and visualized through use
case, block definition, internal block, and sequence diagrams that
represent the integration of machine-learning algorithms for item
classification and virtual annotations from the AR system.

Index Terms—Augmented Reality, Digital Transformation,
Dynamic Annotation, Model-Based Systems Engineering, Item
Tracking, Software Engineering, SysML

I. INTRODUCTION

As immersive experiences with augmented reality (AR) and
virtual reality (VR) devices become more accessible, there
is a growing need for the design of applications that will
support more adaptable and customized human-technology
interactions with such systems. This is echoed in the premise
of emerging Industry 5.0 that expects industrial work contexts
and environments that have adopted the automation and data-
driven technology of the last decade to ensure the well-
being of workers who will interface with this technology [1]–
[3]. This well-being can be characterized with respect to the
resilience of humans in utilizing the technology to enhance
their skills and collaborative capacity and in building safer
work environments and practices. Grech et al. [4] examine
the potential of artificial intelligence (AI) and VR technologies
for product ideation in collaborative spaces. Quandt et al. [5]

present a user-centered design approach for evaluating an AR-
based assistance system. Villani et al. [6] present an adaptive
industrial automation system that was evaluated considering
real production tasks carried out by shop-floor workers.

These studies demonstrate the successful implementation
of systems that effectively promote better human-technology
interaction. Findings from all the different methodologies
suggest that combining AI and VR in systems that highlight
the importance of human-centered design can significantly
enhance the product ideation process in engineering design and
improve the system’s usability and efficacy. Although some
challenges are associated with user-technology interactions,
the methodology presented by the references above shows that
AR systems can be iteratively refined based on practical user
experiences to align with the principles of Industry 5.0: em-
phasizing the seamless integration of human and technological
elements.

The integrated system comprising the AR device, the
physical environment of the user, associated data networks,
sensors, embedded systems, and computing infrastructure can
be recognized as a class of cyber-physical systems (CPS) that
also include humans in the loop. The use of AR systems has
been increasing across industrial, health, and manufacturing
domains [7]–[9]. For example, there is a tremendous oppor-
tunity for immersive technologies to provide point of care
diagnostics across a spectrum of scenarios, such as during
surgical operations [10], in clinical practices [11], nursing [12],
and health education [13]. The humans in the loop include, in
addition to AR system users, other decision-makers who are
often interested in understanding if these digital technologies
are fit for purpose and their flexibility for improving the
efficiency of relevant operations in their organization. The
well-being of health professionals is of paramount importance,
and to support this, it is critical that as digital transforma-
tion takes place across the workplace, a systems and design
thinking process is integrated for addressing specific needs of
individuals and units that are adopting these technologies [14].

Model-Based Systems Engineering (MBSE) has the po-
tential for the various partners involved to engage in the
design of AR applications and contribute to new capabilities
required by the system users. MBSE and Systems Modeling



Language (SysML), which is a graphical language for MBSE
designed to extend the Unified Modeling Language (UML) for
software specification, has generally been applied to describe
the requirements, structure, and behavior of complex systems
with less attention given to its potential for describing the
software that drives these systems. As noted by Hause and
Thom [15], by modeling software specification using SysML,
software engineers can benefit from the system model context,
offering a level of rigor above what can be achieved in
standard software engineering approaches. In this paper, we
demonstrate this advantage using a specific application in an
AR system and discuss a framework for systematic integration
of software engineering models in the MBSE framework.

The paper is organized as follows. A brief background of
the AR model-based system design using SysML is presented
in Section II. Section III discusses a software conceptual
dependency diagram that will allow a high-level mapping
of the software artifacts to a SysML-based representation.
Section IV extends our prior SysML model of the AR system
to include the essential software dependencies and enable new
capabilities to be designed efficiently. An example of how such
an extended software and system model can enable agile soft-
ware design is presented in Section V. Section VI summarizes
the paper and discusses future work in democratizing human-
centric AR design.

II. BACKGROUND

In our prior work [16], [17], a systems-level description
of the AR application design and deployment for a specific
table-top conveyor system was presented using SysML. The
AR application design was referred to as a No-Code AR
Systems (NCARS) framework, in keeping with the objective
of enabling users across multiple domains to create their
applications of interest and deploy them on the AR device
without the need for extensive coding expertise. In this work,
we extend this model to include the design of the underlying
software artifacts that enable NCARS to deploy user-generated
applications. When a user requires additional capability of the
AR system to support their application, software developers
can benefit from both a system and a software model that
allows them to efficiently write the code to support the required
capability.

The AR application was developed for a conveyor system
shown in Fig. 1 which is equipped with ferrous and nonferrous
metal detector sensors to detect the presence of metal pegs and
plastic washers. The conveyor system consists of continuous
belt loops that move from one end to another, and sensors are
placed at specific locations to detect the presence of the pegs
and washers. The integration of AR devices into the conveyor
system enhances the operation efficiency by providing the
operator with real-time data of items. This AR augmentation
provides seamless monitoring and management of the material
in transit, allowing quick decisions and interventions when
applicable.

A high-level use case of NCARS with its as-is capability
is shown in Fig. 2. NCARS supports the four activities of

Fig. 1. Conveyor belt system

Fig. 2. Primary (As-Is) capabilities of NCARS

Annotation, Navigation, Guidance, and Safety. In Annotation,
the user can request just-in-time information of physical
items of interest. With Navigation, the user is presented by
virtual navigational signs such as arrows that support them
in navigating a physical work environment. A user may
choose Guidance, which presents information in the form of
virtual information bubbles that support the sequence of tasks.
Through Safety, the user will be informed of the status of
various safety parameters and alarms.

The NCARS framework uses a registration method pre-
sented in [18]. The registration method and NCARS architec-
ture restrict the annotation of fixed locations on the conveyor
system in the AR field of view (FOV). In this paper, we
consider an extension of NCARS that will allow the annotation
of items in motion, i.e., pegs and washers, that move on
the conveyor system in the FOV. This paper discusses the
extension both from the perspective of the techniques used
and from the perspective of the impact of the change on the
SysML model for NCARS.

III. AR APPLICATION SOFTWARE STRUCTURE AND
DEPENDENCIES

In this section, the software design of the Annotation
function in NCARS is discussed. The Annotation function
allows the system to present annotations in the FOV that have
useful information relating to the user’s point of interest. The



Fig. 3. The conceptualized class diagram of the Annotation Function in NCARS

term object will refer to an instance in the software engineering
context, and the term item will refer to any part or component
that the user interacts with in the physical world. Artifacts
may refer to annotations in the augmented space, such as an
information bubble, an audio clip, or an image presented to the
user. The user interacts with this artifact by accepting the cue
and may, in response, affect actions in the physical world via
some physical item. For example, an annotation may instruct
the user how to reset the system, and in response, the user
may press and hold the reset button.

The software architecture for the Annotation system in
the NCARS framework is conceptualized and presented as a
high-level class diagram in Fig. 3. This diagram emphasizes
the aspects of the software that acquires and presents the
annotations in the FOV and attaches them to the corresponding
physical items in the user’s environment. This diagram is a
typical class diagram in object-oriented design where each
block defines a class or an interface. Classes are the template
definition of a design element. The class blocks represent the
elements that are changeable by the software designer, while
the interface blocks represent elements from external systems
whose behaviors are exposed through Application Program-
ming Interfaces (APIs) and are normally considered as black-
boxes. The properties of the design element are represented
by the block’s properties, and the behaviors are represented by
the block’s methods. In each block, the properties and methods
are shown in <property: type> and <method(): return type>
formats. The return type of a method is omitted if it does not
return any element. The solid and dashed line arrows represent
the reference and dependency relationships, respectively.

The central class is AnnotationController, which updates

and controls the life cycle of all virtual annotations. The
controller depends on the AR device’s interface for the inputs,
which are the user’s hand gestures, voice commands, and the
embedded camera’s direction. An interface to the external
Computer-Aided Design (CAD) server is required for ray
casting [18] to detect if the user is looking or pointing at
an item and to acquire the position of a known item. The
controller obtains the server information from AppConfig,
including IP addresses and API interfaces, and the communi-
cation is carried out asynchronously. Virtual annotations will
be generated and managed by the controller when the user’s
hand or AR device camera intersects with pre-defined items
in the physical environment. They are rendered in the form
of information bubbles and instruction panels. The former is
generated directly inside the controller, while a reference to
the InstructionPanel class is used to reduce the workload of
the controller class. The virtual annotations carry information
about the item and are placed at the exact position of the item.
The other classes in the diagrams are used to represent either
a data type or information exchanged between the classes.

Although this class diagram is a convenient visual tool in
object-oriented design, it lacks several behavioral details that
can be better represented in SysML. To demonstrate these
benefits, we translate and improve the design in a systems
modeling framework. The migration to SysML also brings
traceability and error detection capabilities that help to scale
up the design and extend the framework with new applications.

The NCARS framework has been designed within the larger
context of an application stack. A game engine such as
Unity [19] or Unreal [20] is the bottommost layer and provides
the rendering capability for the applications. It renders multi-



model graphics and audio. The NCARS framework rides on
the game engine and simplifies the use of the game engine
for specific tasks — Annotation, Guidance, Navigation, and
Safety. NCARS offers a more restrictive interaction than a
general game but makes it easier for application development.
On top of NCARS is the Human-Centric design layer, where
content from domain experts who are using the AR device is
generated and managed by the NCARS layer. This content
can be in the form of documents, audio, video, or other
domain-specific artifacts that are required to be produced in the
augmented space. By extending the MBSE model of the AR
system to include software dependencies for functions such
as Annotation, programmers working at the NCARS layer are
provided the structure and behavioral-models of the software
that can be extended to support new capabilities of the AR
system.

IV. EXTENDING AR SYSTEM MODEL WITH SOFTWARE
DEPENDENCIES

This section illustrates how SysML Block Definition
(BDD), Internal Block (IBD), and Sequence diagrams serve
to show the structure and behavior of various interacting
components in the NCARS system context, in more detail than
a typical object oriented design model.

The high-level system structure is depicted in Fig. 4.
This includes a layer of the AR application hardware and
software, the physical system, the communications network
that interconnects all components, and the AR application
data that includes artifacts required for the AR application.
The AR hardware includes devices, such as the Microsoft®

HoloLens and Magic Leap®, and various servers that support
monitoring, computing, and databases that store CAD models
of the physical system and application-specific data. The AR
system users are also included in this structural diagram,
capturing the various users that potentially interact with the
system. Blocks within the red dashed rectangle show new
components added to the as-is system to extend its capability.
The use of these new components are further described in
Section V.

The relationship between the blocks is captured by the
specific direction and shape of the arrows that connect the
blocks. A solid line with a filled diamond arrow represents
a direct composition, indicating that NCARS is composed of
AR-App-HW, AR-App-SW, and AR-App-Data. The Servers
block is composed of the Monitoring Station and Data, CAD,
and Compute servers. If child blocks can exist independently
of the parent, a directed aggregation shown in a solid line with
an open diamond is used. Hence, NCARS utilizes physical
systems and networks, and AR-App-HW uses AR devices and
USB Cameras. A solid line with an open arrowhead represents
a unidirectional association with another block, which shows
AR system users’ interactions with the NCARS system for
particular purposes, noted against the arrow. The dotted line
with the open arrow shows a type of dependency between
two blocks. use indicates that a block uses another whereas
Item Flow specifies items being sent from one element to

Fig. 4. High level NCARS system structure

Fig. 5. Components saved in DATA and CAD servers from Data sources

the other. Fig. 5 describes data types stored in Data and
CAD servers. These data may correspond to the contents from
domain experts as described in Section III. A solid line with a
closed arrowhead shows the generalization relationship, e.g.,
Animation is the sub-type of 3D AR content.

The AR-App-SW block is expanded in Fig. 6. While
Fig. 3 focuses on the Annotation features, Fig. 6 includes
software assets that support NCARS system for the four tasks
specified to visualize reusable and specific components. Blocks
represent classes or sub-classes in the software, and each block
is further classified into domain or functional classes. Domain
class blocks define attributes and methods specialized to each
of the activities that NCARS supports, whereas functional
class blocks define supporting features that are reusable by
multiple domain classes and also act as an interface to convey
user inputs to the software application.

Note that the GestureRecognition and KeywordManager
interface classes in Fig. 3 belong to the User Input Manager



Fig. 6. High-level AR application software structure

block. The AppConfig and InstructionPanel classes that in-
teract with the AnnotationController class are also included,
along with other classes such as Registration and Calibrate-
Menu, which are required for the NCARS system.

The orange-colored boundaries indicate that the object in-
stances corresponding to these classes would be executed once
for the application. In contrast, object instances corresponding
to classes without the orange highlights have components
that are executed multiple times until the object instance is
inactivated.

A block inside the red dashed rectangle emphasizes a new
class to be added to extend the AR system’s as-is capability.
Section V further describes this new capability design.

With the high-level structure constructed, each of NCARS
functions can be further described. Fig. 7 shows the Anno-
tation system, that is before a new capability is integrated.
This is equivalent to the translation of the conceptualized
software diagram shown in Fig. 3, excluding the interfaces.
The Annotation Controller is composed of a Ray with data
type of Vector 3D, which is also a reusable component.
The controller associates with User Input Manager and App
Config to perform the required operations. The two properties
with data type IP Address in the App Config block specify
the servers’ addresses in the network environment. Also, the
controller controls the Virtual Annotation.

The particular detail, i.e., specifying what is being ex-
changed via object interactions is abstracted from software
models and naturally represented in IBD diagrams. This level
of detail, and other capabilities of the MBSE framework, can
be leveraged to engage systems and software engineers in
extending system capabilities. The IBD in Fig. 8 depicts how
the components in the NCARS system interact to perform the
Annotation feature. The small squares attached to the border

Fig. 7. Annotation as-is system structure

Fig. 8. Annotation as-is system connection

of blocks are ports, which are points where the component
and external entities interface. A line connector between two
ports conveys the transfer of data or objects. The Annotation
Controller block inputs user actions such as voice or gestures.
Through the controller, the CAD server receives these inputs
to process the user requests for specific annotation labels. The
controller then initiates or updates the virtual annotation with
this information from the CAD server.

The sequence diagram shown in Fig. 9 provides further
detail on the dynamic behavior of the components described
in Fig. 8 as particular operations are invoked sequentially. An
open arrow indicates asynchronous operation whereas a closed
arrow means synchronous behavior. A dashed line represents
a response. The first three messages represent the sequence
of behaviors invoked during the registration process. The
Calibration operation is only initiated when the user chooses
to generate new virtual landmark points. This operation is
required when the user starts the application and the AR



Fig. 9. Annotation as-is system interaction shown in sequence diagram

device is at a new position relative to the physical system,
i.e., the table-top conveyor belt. To account for the time
duration until the server completes the computation process,
the Calibration operation is called asynchronously. When the
Annotation feature of NCARS system is activated without any
error in the registration process, the rest of the interactions are
invoked when the guard condition (viz. timeDiff and rayDiff)
is met. The user inputs, i.e., ray, are sampled every one second
when an angle difference between successive rays are smaller
than five degrees. If the ray intersects with an item, virtual
annotations will be generated. These interactions are repeated
until the user terminates the application.

Analyzing the structure of the as-is software architecture
described helps inform where a new capability can be added
and also what components would be affected or reusable. The
next section further describes how additional components are
designed to achieve an extension of the as-is system.

V. ADDING NEW AR CAPABILITY: OBJECT DETECTION
AND TRACKING IN AUGMENTED SPACE

This section discusses the approach to efficiently extend the
as-is system model described in the previous section with a
new AR application capability required by a user. The new
requirement is that a moving object in the physical space is to
be augmented with a new annotation label each time it changes
position. It includes tracking items of interest, classifying
them, and annotating their positions as they move with new
virtual information labels. Such applications are important in
several domains such as an assembly line worker following
annotated instructions as an object they are working on moves
to a new station or a physical therapist requiring their client to
follow a moving object with hand, head, or eye movements.

The new AR application capability is presented using an
updated use case diagram shown in Fig. 10. This extends the
use case diagram shown in Fig. 2 with a new function denoted
Tracking, which is shown to include functions for the user
to select items in the physical space that are to be tracked.
The software developer will need to integrate a new class in
the software that is denoted as Item Detection & Tracking
Controller in the IBD shown in Fig. 11. This class extends
the Annotation functionality with new operations of creating
a position-dependent label and augmenting the physical space
with this label.

Fig. 10. Use Case describing a new capability of NCARS

Fig. 11. Tracking to-be system



Note that the to-be system shown in Fig. 11 has a similar
structure as the Annotation as-is system described in Fig. 8.
New components surrounded by the red rectangles are added
to achieve the new capability. The Item Detection & Tracking
Controller receives a user’s items of interest and sends them to
the CAD server. The compute server receives the target items
from the CAD server and outputs the results of the detection
and tracking operations. The CAD server saves and translates
the data to virtual coordinates. The controller will then receive
the information and annotate the virtual space. Once the target
item is selected, the compute server continuously outputs
positional data to the CAD server as long as the target
item is found in the streaming data from the camera. This
communication happens asynchronously; thus, the connection
protocol, such as the WebSocket, is utilized with the controller
being a client to maintain the communication with the server.

Preparing the system to detect and classify specific items
in the physical space from a video capture device requires a
number of tasks. The tasks undertaken to detect and classify
these items are shown in Fig. 12. It includes the required
software and hardware components that enable these tasks.
Pegs and washers are examples of Item types of interest for
the table-top conveyor system which serves as the test-bench
for the model-based design of AR applications.

Fig. 12. Item detection components

The state machine diagram shown in Fig. 13 outlines the
process of creating a training and tracking application. The
You Only Look Once version 8 (YOLOv8) algorithm [21]
is utilized. The state machine depicts the sequential events,
such as a collection of image and video data from a camera
system, followed by pre-processing tasks of labeling the data
with bounding boxes and creating train, test, and validation
data sets. Further, the training data is scaled with various
transformations to improve the robustness of the classification
algorithm. The final step is the training using a neural network
classifier and iterating the process until a favorable accuracy is
achieved with the model. Finally, the model is deployed onto
the compute server.

With the structure and behavior of the system realized,
a prototype of software components for the new capability
is designed and tested with an AR device. The following
summarizes the results of a partial potential solution for
detecting items in motion and annotating them, which are part
of the new requirements.

Fig. 13. Detection and Tracking algorithm preparation

A. Demonstration of integration of new capability

The to-be system prototype is designed to detect items of
interest, pegs and washers, at eight particular locations. Fig. 14
shows the result of YOLOv8 algorithm for real-time detection
and classification using images streamed from an external
camera. This camera is placed where it captures the beginning
of the tabletop conveyor belt. The bounding box with a label
p2 indicates that a peg is detected at position 2, and this data
is sent to the AR device. The value next to the label is a
confidence score indicating the probability that the predicted
box contains the classified item, i.e., peg at position 2. Upon
detection, the system initiates the transmission of pertinent
information to the AR device in the form of an information
bubble with a latency of about 1 second. Fig. 15 demonstrates
the user’s view from the AR device. This virtual annotation
will move as the item in physical space changes its position.

Fig. 14. Camera view (zoom-in) Fig. 15. AR user view (zoom-in)

The model-based representation of the AR as-is system
enabled an agile deployment of a new capability required by a
user, with support for iterative and incremental system updates,
embracing a modular SysML approach. The next phase of the
research involves evaluating and refining the prototype against
new requirements and engaging software and system engineers
in concurrent the model-based design of the system and its
software.

VI. DISCUSSION

This paper addressed the integration of new software capa-
bility for an existing AR application, utilizing a model-based
representation of the system. With a focus on the human-
centric design of emerging technologies, MBSE and SysML



are proposed as a means to engage system users and software
and system engineers on a shared platform to conceptualize
and converge on new AR system requirements.

Whereas software engineering tools such as dependency
graphs allow visualization of the structure of the software
design, they often include details that complicate the repre-
sentation of the key architecture. They also have limitations
in demonstrating the run-time connectivity of the functions
involved. To extract a minimum set of software components
that perform the required functions, software developers who
designed the NCARS framework worked with systems engi-
neers in the co-design of the proposed architectural diagrams
using SysML.

An existing model-based representation of the AR system
that captured the AR capability at a high level was first
extended by incorporating the underlying software architec-
ture that supports the system functions. The extension was
demonstrated by adding a new capability to the Annotation
function of NCARS, enabling it to track and annotate moving
items in the physical space. A new class for Item detection and
Tracking was proposed, and its dependence on existing objects
in NCARS and the requirement for new functions for the
software developer to implement was specified using a SysML
internal block diagram. The prototype system implemented
the new structure, and its work was verified. In future work,
the SysML platform will be accessible through a virtual
collaborative space that allows multi-domain users to propose
new capabilities and use cases and envision the result of their
proposal using model-based systems and software engineering.

As future work, it may be beneficial if such applications
offer a new capability to promote robust communications or
feedback system between the practical and supervised system
users. It is worth exploring that articulating the model by
integrating software and systems engineering help facilitate
the human-in-the-loop CPS design with multiple disciplines.
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