# University of Massachusetts Lowell Department of Electrical and Computer Engineering EECE 4130 Linear Feedback 

## Problem set 4

1. Consider the system

$$
\begin{gathered}
\dot{\underline{x}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 1 & -2
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u(t) \\
y=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] \underline{x}
\end{gathered}
$$

a. Determine the eigenvalues and eigenvectors of the system
b. Determine the state-transition matrix
c. Determine the $\underline{x}(t)$ in terms of $\underline{x}(0)$ and $u(t)=0$.
d. Is the system controllable.
e. Is the system observable.
2. Consider the system

$$
\begin{gathered}
\underline{\dot{x}}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-2 & -2 & 0 \\
1 & 1 & -3
\end{array}\right] \underline{x}+\left[\begin{array}{cc}
-1 & b \\
1 & 0 \\
1 & 1
\end{array}\right] \underline{u}(t) \\
\underline{y}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & f & g
\end{array}\right] \underline{x}
\end{gathered}
$$

1. Determine the eigenvalues and eigenvectors of the system
2. Determine the state-transition matrix
3. Determine the conditions for controllability
4. Determine the conditions for observability
5. Determine the root loci for the closed-loop unity negative feedback system $H(s)=1$

$$
G(s)=\frac{K}{s(s+1)\left(s^{2}+4 s+5\right)}
$$

a. Evaluate the real-line root locus and directions of closed-loop pole migration with increasing gain $K$.
b. Determine the asymptotes and intercept
c. Determine the conditions for system stability, $j \omega$ axis crossing and gain.
d. Determine breakin/breakaway points
e. Determine arrival/departure angles
4. Determine the root loci for the closed-loop unity negative feedback system $H(s)=1$

$$
G(s)=\frac{K(s+9)}{s\left(s^{2}+4 s+11\right)}
$$

a. Evaluate the real-line root locus and directions of closed-loop pole migration with increasing gain $K$.
b. Determine the asymptotes and intercept
c. Determine the conditions for system stability, $j \omega$ axis crossing and gain.
d. Determine breakin/breakaway points
e. Determine arrival/departure angles
f. By adjustment of the gain $K$ locate the closed-loop poles on the root loci such that the dominant closed-loop poles have a damping factor equal to 0.5 .

