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Jr(m) = {=0.5)"u(n) 2
1
4 —_ 2 Hu n ~0.5 105 Re(z)
- \\ \ \\
(@ &
f(n)=(~0.5Y"u(-n) 05
ﬁ | _ R2(9= 305
-
3 2 h_ _ n -0.5 0.5 Re(z)
-2
(b)
_ _ e 322122415
S QP TR0 3 AT Y T
* Ttee
¢ n Re(z)
(<)
F4 (1) = 3(0.5)"u(n) + 3%u(n)
422 — 9.5z
1 L8 TR -B

44

[

0 1 2 3 n 37/Re(2)
(@ &
fs =303+ 3Cm F5(2) = QMM.NM 2 3
2 1 T M ] Re(2)
(¢}

foln)= 4, (@) u(n) + A, (B)"u(—n) Case lat<[£1 <1

T1,

N(z}
(z—aKz =P

{f)

Figure 7-1 The discrete time functions of Example 7-1 and their two-sided

transforms.
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(c) Si(n) = 3(0.5)%u(n) + 3"u(—n)
3z . -3

z—05 z-3°

322 - 122+ 1.5
ST AT s
(z-05)(z—-3)’ <lzl<3

JS3(n) and F;(z) are shown in Figure 7-1(c).

Therefore Fi(2) fz| >05 M |z| <3

(d) fo(n) = 3(0.5)"'u(n) + 3"u(n)
3z z
therefore B_Auvuan;a+nl 3 [z] > 05 M |z| >3
4z — 9.5z

=——— lz| >3

(z.— 0.5)(z — 3)°

Jfa(n) and F,(z) are plotted in Figure 7-1{d), and since f (n) is zero for
n < 0, the annulus of convergence is outside all the poles.

(e) fs(n) = 3(0.5)"u(—n) + 3"u(—n)
-1.5 -3 .
Wmﬁuvﬂg.rulw, |z| <05 M |z] <3
—45z+ 6

T Z-05z-3) |z <05

fs(n) and Fy(z) are shown in Figure 5-1(e), and since the function is
zero for n > 0 the annulus of convergence is inside all the poles.

ity Jo(n) = A, (a)"u(n) + Ay(8)"u(-n)
\A_N \Aum

Nialulm

therefore Fe(2) . |z} > |la| M |z] < |8]

The Z transform will exist for all &, 8 such that || < |8]. This general
situation is demonstrated in Figure 7-1(f).

Reflection on Example 7-1 indicates that the behavior of f(n) for n < 0
places an upper bound on |z| and that the behavior of £(n) for n = 0 places a
lower bound on |z|. If f (n) for both positive and negative r consists of products
of exponents and polynomials of n (e.g.. f(n) = [(2" + 3n(0.5)")u(n)
+ (21 + 3)3"u(—n)), then if F(z) exists it will be the ratio of two equal order
Polynomials of z (if £(0) # 0).

The evaluation of Z transforms for any function of the form:

S ) = filmyu(n) + fr(n)u(~n) (7-2)

Is straightforward for functions for which the one-sided Z transforms of
Ji(myu(n) and f,( - n)u(n) are known:

@ 0
ZLf 0] = 2 Simz™ + 3_famz
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(O + Dz + -2
+(A0) + LoDz + (=2 + - - )
= Z[filmu(n)] + Z[ f(-m)yu(m)]],_-

The clear insightful understanding of:

Z| fy(mu(—n)} = Z[ L{-mu(m]],-

for |z7'| > por |z| < p~' is very important.
We now find some two-sided Z transforms using a table of one-s
transforms and Equation 7-3.

EXAMPLE 7-2
Find the Z transform of the following functions using Equation 7-3.

(a) fi(n) = a"u(—n)
(b) f2(n) = (—0.5)"u(n) + (3 + 1) (—3)"w(—n)

Solution
(a) Z[a"u(-n)] = Z[a "u(n)]|,_»
oz
Cz—a " |
)
= 2V _ g}
—-a
= + *Nl__ > ﬁl_
z—a
-a
- ,  lz|l<a
z—a

This agrees with our result from Example 7-1(b) whena = —0.5
(b) Using Equation 7-3, we obtain:

Z[(—0.5)"u(n) _ N
+ G+ m(=)"u(-n] z+ o 51216 -m=3) iu:

z Iy
= N|¢.||.@.W +Z|3]— 3 u(n)
1 1!
— |- WVAI Mva ﬁm\uv o
z 3z7! 1 z7!

+ + =
z 4+ 0.5 N|_+w wAN|_+WVM
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z 4 9 3z
TIF05 z+3 G+

1
z| > 0.5 M |z7Y >3

B 23 + 40.52% + 24z
Tz + 05z + 3

Finally, Table 7-1 gives a short list of two-sided Z transforms.

05<]z| <3

7-2 IMPORTANT THEOREMS OF
BILATERAL Z TRANSFORMS

Table 7-2 lists some imporiant theorems for two-sided Z transforms. Since the
main application of two-sided Z transforms is to solve LTIC discrete systems
with random or signal plus random inputs the convolution and correlation
theorems are of the utmost importance and will now be proved and demon-
strated.

EXAMPLE 7-3
Prove the convolution theorem and comment on the region of conver-

gence.

TABLE 7-1 A TABLE OF TWO-SIDED Z TRANSFORMS

fn) Fl2) = W Hmz™ Region of convergence
a'u(n) : [z]>1al
zZ—a
() — ER
n(n — 1)a"u(n) _E |z] > |al
(z - a)’
a"w(~n) - |z] <1al
z—a
—za®
nau(—n) P |z} <|al
—22%
a(n + 1)a"u{—n) —_— Jz| <|a|
(z —a)’
Simyun) + fu(mu(—n)  ZLAi@u(m)] + ZLA(- ()] |- o <lzl<p,
1
Frlmyu(—n) Z{ il = u(m)] | [z7' = 03U |z] < pp = =

P2
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TABLE 7-2 TWO-SIDED Z TRANSFORM THEOREMS

Theorem Time function Two-sided Z transform Region of convergence
f(n} F(2) on <zl <P
gl G(2) on < |zl < pn
Linearity af(n) + bg(m) aF{z) + bG(z) max{p,, pn) < |z| < min(pz,
Shifting fln—k) z7*F(2) ?
Convolution /80 F(2)G(z) max (o pa) < | 2] < mingp
- 2. f(p)g(n — p) ’ 12
: J(n) @ g -1 -1 s :
Correlation ~ 2 f(melp + ) G{z)F(z™") max{py. 1) < 12| < min(py,
g(n) ® f(n) F(2)G(z™") ?
f(n) @ f(n) F()F(z™") max{py, p33) < |2} < miney

Note: The reader shou)d fill in the two bianks marked by the question mark.

Solution. The convolution theorem states that if:

f(n)— F(2), b\.A_N_Abb
and g(n) « G(2), pg, < |2] < pg,
then fyrgm) <~ F(DG@),  m<lzl<e

where p, and p, will be found. To prove this, we have:

w

f(myxg(n) = 2_S(p)g(n — p)

—a

<

therefore ZIf(nrg(m)] = 2 M fpgn-p)|z"

fAmew | pm—o

Interchanging the order of summation, we obtain

ZUf ) = 3 FD |2 gtn = p2~

p=—a i = 0

and letting  — p = [, we get:

ZL yrem] - 3 F (D) 3 gDz

- o

- fpz7 MwSi

Therefore Z[f{(n*g(m)} = F(2)G(2),  for v
(o, < 128 < 0p) M (o < 2| < £g)

or max anﬁ ﬁh_v < ﬂN_ < B.:y A.@\.ﬁ h-huv A\wl ..
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EXAMPLE 7-4 :
Find the Z transforms of the foltowin i

I g and denote the region of -

gence if the transform exists: Fon o fomer

(@) fi(n) = (0.5)"u(n)*(—0.6)"u(—n)
(b) fo(n) = u(m)*(0.5)"u(—n)
(©) f3(n) = (0.5)"su(n)
Solution
0.6
(a) n.@nmw|§aw. lz] > 0.5 M |z] < 0.6
~ 0.6z
TGoos)e o 03 <lH<0s
~0.5
(b) Fid) =22 ——20, 2> 10 2] <05 -9

therefore F,(z) does not exist.
(€} (0.5)" =~ 0.5"u(n) + 0.5 "u(—n) — 8(n)
We note the term —8(n) is necessary since (0.5)"u(n) and

(0.5)"u(—n) each contribute a value of magnitude one at n = 0. So we
must subtract 5(n).

Z[0.5u(n) z -2
+(0.5)"u(-n) —6(m)] "z _05 T z_2

[z] > 0.5 N {z] <2

—w

__Fodzl
(z - 0.5}z -2)
CPoaserd
(z—-0.5){z-2)
) L
(z~-05)(z-2)
0.5 <zl <2
Therefore Z[0.5) " xu(n)] - —1.5z z
w (z-05)(z—-2yz—-1"
l<|z] <2
_ —1.522
(z-0.5)(z— 1)z —2)
1 < _N_ <2
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We now have two ways to evaluate discrete convolution summations:

1. directly from Z, f (p)g{n — p) or
2. as the inverse transform of F(z)G(z2)

EXAMPLE 7-§
Prove the correlation theorems:

(@) x(n) @ y(n) — Y (2)X(z™")
) x(n) ® x(n) < X(2)X(z™")

and discuss the regions of convergence.

Solution

(a) Now by definition:

213 y@xth - m|= 31> yyxth — m|z

k-a A=wm | k=—=

Interchanging the order of summation and using the substitutio
variable k — n = p, we obtain:

Z[x(n) @ y(n)] ML. y(k) W x(k — nyz™"

k=—c Am—ot
nwxawi%i
-— pm—oe

= M y(k)z™* M x(p)z*
= Y(2)X(z™"), for
(o, <lzl <) M (py <127 < p)
The annulus (p,, < z™' < p,,) is equivalent to p;;' < |z| < onl.
Zx(n) @ y(n)] = Y(2)X{(z™"), for
(o <zl < p,) N (5} < 12| < P
or Zx(n) ® y(n)] = Y(2)X(z™"),

max {p,,, p5,') < 2|

Therefore

< min (p,,, BM_J
(b} The Z transform of an autocorrelation function is a special case
Equation 7-6:
Z[x(n) ® x(n)] = X(2)X(z™"),
(0s, < |2z] < pg) N (o35 <zl < p;))
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,_,w__n region of convergence co.noB.nm. max (p,, p5,') < |z| < min (p,,,
p%' ) and the transform exists if this annulus exists.

EXAMPLE 7-6

Find the Z transforms of the following correlation summations:
(@) (—=0.5)"u(n) ® (—0.5)"u(n)

(b) (0.5)"u(n) @ 3"u(—n)

(€) (0.5 @ u(n)

Solution

Z[(-0.5)"u(n) z 2!
therefore ® (—0.5)u(m)]) 710527105
oz 2
Cz+05z+2
0.5 < _N_ <2
I S
Tz +05)z+2)]
0.5<|z| <2
(b) Z{©O.S) umy _ =3 '
@ 3'u(-m)] "7 32705
6
a7 .MV‘AN 3 max(0, 0) < |z| < min(3, 2)
+6
o The g C<l<?

(€) (0.5)" — (0.5)"u(n) + (0.5)"u(—n) — 8(n)
Hﬁo.mvai& + 2"u(—n) — o(n)

z -2

Therefore —_
z—05 z-12

Z[(0.5)"] = -1

. —1.5z
(z ~ 0.5)(z ~ 2y’

05 <|z| <2

as in Example 7-4.
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—1.5z7"!
£ 5yl __*z
Therefore Z{(0.5)" ® u(n)) e e X Yo
z —1.5z
TZ-105(z — 2)%(z - 0.5)
—1.522

(z — 0.5z — 1)z = 2)
|z| > 1M [0.5 < |z| <2]

_ —1.52?
T (z-05)0z -1z -2)

_A_N_.Am

If we need to find 0.5 @ u(n), we now have two approaches:

1. evaluate Z; y(k)x(k — n) or
2. find Z-' [—1.52%/(z — 0.5)(z — 1}z — 2)], where Z~! indicates
inverse Z transform.

7-3 THE INVERSE TWO-SIDED Z TRANSFORM

In this section two techniques for finding inverse two-sided transforms wi
discussed:

1. the use of partial fraction expansions plus table reference
2. the classical evaluation using the theory of Laurent series and res
theory

7-3-1 Inverse Transforms Using Partial Fractions
Given:

N(z) b,2" + by 7" 4 -+ by
D(z) @ + @2 -+

where the order of N{(z) is at most the same as that of D(z) (is this common fol
transforms?) we can expand F(z) or z~'F(z) into partial fractions and fr
table of one-sided transforms plus the fact that Z[f,(n)u(—n)l4
Z[ f(=mu(m)] |-, call off f(#). A number of inverse transforms will now
evaluated. 1

F(2) = , o < |zl < p

EXAMPLE 7-7
Find the inverse Z transforms of the following functions using pa
fractions:
22422242
(a) F(z) — T 22 * 22 1<zl <2

> 2 127 — 2N
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234+ 222 4 22

(b) m.%uvu%w. |z] > 2
2} 4+ 222 4+ 22

(¢) F3(z) = G e [z] <1

Solution

(a) Since the order of the numerator and denominator are the same, we
express F(z)/z in partial fractions:

Fz) 22+2z2+2 I <lzl<2
z  (z+ D¥z-2)
4 A4, As
I l T Ge o2
1-24+2
Ay - — = 033,
2 -3
4+ 4
\.wﬂl._.|+wu i.11
9
dz+2z+2
A =f—
m:@ ! &N z-2 2 —1
_ =3(0) — 1{1) - —0J1
9
-0.11z  -0.33z Lllz
Therefore F(z) = p— +Q+ CN.TNIN.
1<lz|<2
From our experience we know that the pole at z = —1 contributes to

f(n) for n > 0 and the pole at z = 2 contributes to f(#n) for n < 0

£ = =0.11(=1D)"u(n) - 0.33n(—1)""'u(n)
— LI "u(-n—1)

The inverse of 1.11z/(z — 2), |z{ < 2 requires some thought.

Therefore

[.11 1
z = LI "ul(—n) =
p— L.11 NANV u(—n) = g(n)
Therefore the inverse of Z{1.11z/(z —2)] is g(rn+ 1) = —1.11
G2 u(—n — 1)) = —111(2)"u(—n — 1), as was written in the

expression for f,(n).

22+ 22° + 2z
(z+ D*z-2)

Since all the poles are inside |z| = 2, then f{(#n) is zero for n < 0

(by Fy(z) = [z] >2
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and  fo(m) = —0.11(—1)"u(n) — 0.33n(—1)""u(n) + 1.11(2)"uf
2+ 227 + 22 .
z+D¥z-2)"
Since all the poles are outside | z| = 1, then f;(n) is zero for n > 0. &
-0.11z =033z 1.11z

o - teryp o2

—0.33z
(z+1)?

We must now discuss the inverse of —0.33/(z + 1)% In general:

(¢} Fi(z) = |z] <1

|zl < 1

— L112)"e(—n — 1)

£ = 001(=1)"u(—n - 1) +

au(—n) — NHnn
Therefore na tu(—n) < (z - SMNIISQH,N a(=1)
T
T (z-a)?

Using this relation, we have:

~0.33z .
AlNilﬂ.dluTvO.wwtm|_v _tA|=| :
and £(m) = [0.11(=1)" + 0.33n(=1)*" — 1.11(2)"]u(~n

Figure 7-2 parts (a) to (c) show F(z) and its corresponding discrete 4
function for this problem.

From Example 7-6 it can be seen that all the work required to eval
inverse two-sided Z transforms by partial fractions was already mastered fo
one-sided case. The poles inside |z| where p, < |z| < p, determine f(n) for
whereas the poles outside |z| determine f(n) for # < 0. If a, < p,, then a
A,;zf/{z — a;) contributes {(a,)"u(n), whereas A;/(z - a;) contrib
(@) 'u(n — 1). If @, = p,, then a term 4,/(z — a,) contributes A,(e,)"u(
whereas —A,z/(z — «,) contributes 4,{c;)™ 'u{—»n — 1).

7-3-2 Inverse Two-sided Z Transforms
Using Residues

The Appendix on complex variables summarizes the theory of Laurent series
the function F(z) = N(z)/D(z) is expanded in a Laurent series in the region g
iz| < p, which represents an annulus between two consecutive poles, then:

F(2) = W A",

M=—on

o<zl <p ¢
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2 +22+22
z+1z—-2) H

(a}

hm
2 +2:2+2;
z+1%(z-2)

(b)

f3(n)

2 +2:2+22
(z+1)P(z-2)

R S

Re(2) IH

(€}
Figure 7-2 The Z transforms and their inverses for Example 7-7.

where the coefficients are given by:

4, - .gm F@ (1-9)

= N|QC_ A+l

z

where C is defined by z(8) — pe”®, 0 < 8 < 27 with g, < p < p,. Further, if the
order of N(z) is at most the order of D(z), then the inside—outside theorem
yields:

Forn=0
. F(z) . v
A, = —Z[residues of the poles of g outside C] (7-10)
Forn=0
F
A, = %[residues of the poles of N.Mrm_v inside C) (7-11)

As was seen in the Appendix the use of the inside—outside theorem allows us to
avoid finding the residue of a higher-order pole at z = 0 for n > 0. We now must
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carefully adjust this theory of the Laurent series to evaluate inverse
transforms. By definition:

ZIf(Ml =+ - f=mZ + -« - +f(=1) 2 + f(0)
+fMzt + @z + e

The Z transform is a Laurent series expansion where the Laurent coefficients m..w.
related to the discrete time values by:

7/THE TWO-SIDED Z TRANSFORKS

<|z] < 4

f(—n) - 4
or fmy=A_,
Therefore, given:
Z[ f(m)] = F(2), <|zl <p2
we have:
1 F(2)
f)=A_, - 2aj P dz
=507 mm 2 VF(2) dz (1- _h,_
and from Equations 7-10 and 7-11 we obtain:
Forn=0
a—1
f(n) = 2 .ﬂ. " 'F(z) dz
= = [residues of the poles of z*~* F(z) inside C] (7-
Forn<0
-1
S -5 mm 71F(2) dz i
= —3 [residues of the poles of 2" F(z) outside C] G. H”.
since "1 = 1/z"*1 causes the order of the denominator to be more than o

higher than the numerator and the inside~outside theorem may be used.
Summarizing, we conclude:

1f
N(z)
D(z)’

and the order of N(z) is at most equal to the order of D(z), then the m=<o_.wow
transform:

Z[f(m)) = F(z) = <lzl <o,

1

2w j

fn) = A4, = N__L F(z) dz
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is:
forn=0
S(ny = = {residues of the poles of z*~' F(2) inside C]
forn< 0
f(n) = —X {residues of the poles of z*~' F(z) outside C}
where Cis defined by z{f) = .

pe’,  pi<p<p

We now find some inverse two-sided Z transforms using residue theory.

EXAMPLE 7-8
Find the inverse Z transforms of the following functions using residue
theory:
22+ 2224+ 22
a) F -
@F@ =gy 1 <l<2
22+ 222 4+ 22
b) Fy(z) = —————=
(h) Fy(2) z+1)z-2)’ |z] > 2
224222422
¢} Fi(2) = ———
A v uANv ﬁNnT ~V~ANTNvu _N_.A—
Solution. We are now finding by residue theory the inverse transforms of

the same functions whose inverses were found by partial fraction theory in
Example 7-7.

(a) Figure 7-2(a) showed a pole zero diagram for F\(z).

2z + 2z
Therefore n 2! 2 +
S = $g& Cre-2%
Forn=0
Si(n) = [residue of the second-order pole at z = —1]
d[z'(z*+ 22+ 2)

T dz (z—-2) 2=—1
[z = D[nz"" (2> + 2z + 2)
_+ z"(2z + 2)] — 2"(z* + 2z + 2)(1)]
AN - NVN z=—1

1
= wTuzTST_E + (=D™0)] - (-D*D)}

— —0.33n(—1)"" — 0.11(—1)"
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1 The inverse transform is:
L) =[011(-1)" + 0.33a(-1)"" — 1.112)" | u(—n ~ 1)

This agrees with Example 7-7(c) and is plotted in Figure 7-2(c).

We note when n = 0 the pole at z = 0 has a zero residue:

Forn<0
fi(n) = — [residue of the pole at z = 2]

22+ 22 + 2)
AN + —VN 2-2

7-3-3 Complex Convolution

10 In Chapter 5 we discussed complex convolution when finding the Laplace-
= 2" 5 transform of the product of continuous functions. We now consider complex
convolution for the product of discrete functions.
= —-1.11(2)*
Summarizing the inverse transform yields: EXAMPLE 7-9
Sim) = [=0.11(=1)" = 0.33n(=1)""Ju(n) — 1.11()"u(—n - Prove:
Hrm_m wom._: agrees with part (a) of Example 7-7 and was shown in F K(z) = Z[ f(n)g(n)] = m\. .&. F(p)G m ptdp
-z(a).
2242242 - HANv»QANV
) fim) -5 P 2 TETEd po2 iven:
27) ey {24+ DXz —2) given: S —=F@), pr<p<pp
Forn=0 and g(n) < G(2), Pt <P < P>
fu(n) = = [residues of the polesat z = —1and z = +2] Pay particular attention to the restrictions on C and the region of
convergence for K{(z).
= [-0.11(=1)" = 0.33n(~1)™"' + 1.11{(2)"] . . .
: Solution. Before starting our proof, we note that if F(z) converges p, < p
Forn<0 . < ppyand G(z) converges p,; < p < py,, then k(n) = f (n) g(n) must havea Z
Since there are no poles of F(z)z*" ' outside C, then: transform that 8=<n~mnm Pr1Pg1 < P < Ppapg [think carefully about this]. By

definition:

Saln) =
Finally, the inverse transform is:
(1) = [=0.11(=1)" — 0.33n(~1)™" + L11(2)"u(n)
This agrees with Example 7-7(b), which is shown in Figure 7-2(b).

M fmgmz

3 ¢

Now assuming it is permissible to interchange the order of summation and
. integration, we obtain:

K(2)

-1
Y um EEn %

a 22+ 2242
NqC oo 2+ DNz -2)

dz, p<l

K@) -2 % r(p) Mw@ ot

Na..\ [} Ao —x

{©) bc‘;

Forn=0 L
Since there are no poles inside C then f3(n) = 0 ~ 2 .&. F(p)Gl- ﬁ- dp
= zuv«QANv

Now we must carefully discuss C = p,e . First, p, must satisfy p;, < p,
< py2. Also for any z such that p;,p,, < |z| < ppp,,, we must have p,, < |z|

Forn<0
f3(n) = —Z [residues of the poles at z = —1 and z = 2]
= [0.11(—=1)" + 0.33n(-=1)""" = L.11(2)"]
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+py < pg- The solution of an actual problem will make us appreciate thesy
restrictions. 4

Consider finding Z[ f (n)g(n)] where f (1) = 2"u(—n) + u(n) and g(n) 4
u(—n) + 0.5"u(n) by complex convolution. .

(a) Find the annulus of convergence for which F(z)*G (z) exists. .
(b) Sketch a pole zero diagram showing the poles of F( PG (z/p)p~" ay

indicate where C is constrained in the p plane.
(¢) Evaluate K(z).

Solution
@ F@) = Z[2"u(—n) + u(n)]
unllwm+uw_, 1<|z] <2
G{(z) = Z[u(—-n) + 0.5 u(n)]
St SO 0.5<|z] <1

z—-1 z-05’

K(z) = F(2)*G(z) will exist for 0.5 < {z| < 2 as is easily seen by fin
fn)g(n).
(b) With some work:
1 pP—4p+2 pt—dpz+ 227
Nmnvul. m
Nd w @LEL:T%L%ﬁ

We note K (z) has polesat p = 0, 1, z, 2, and 2z, and we must satisfy ¢
conditions for p, in C defined by pe *, 0 < ¢ < 2m; first, | < pe < 2,
second, |z} < p; < 2|z| where 0.5 < |z| < 2 from part (a). This requis}
the pole at p ~ z is always inside the pole at p = 2 and the pole at p = §
is always outside the pole at p = 1. Therefore the contour pxe 7* alway
has the poles at p = 0, p = 1, and p = z inside it and the poles at p =

and p = 2 outside. The pole zero diagram is shown for different case!
Figure 7-3. These moving poles at p — z and p — 2z in the p plane

tricky to visualize. .

(¢) The direct evaluation of:

~—

K(z) =

1 ﬂ. (P —4p + ) (p* — 4pz + 2z%) dp
C

20 Y plp — D(p — 2)(p — 2)p — 22)
= M [residues at p = 0, 1, and z]

is very Bo&w and so we will handle it in simple parts.
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(g Case | z | close to 0.5

and z real. positive

Re(p)—

I

)
iR

ta)

Imip)

(b}
Figure 7-3  Pole zero diagrams for F(p)G(z/p)p~" for Example 7-10.

Case | 2 | close to 2
and z real. positive

[}

2:  Rel(p) —»

-z

1 -2 P r 2z A1
=5 - - —d
K@) 2 .&.htm p-lj\p-—z ﬁlwnbb

o

7
1 -2 p
|Nd..wm €1an|5+§|:€|£

C
2z N 4z &n

(p—D(p—-22) (p—2(p-22)p

-2 z
uN|N+_+N|o.m+H

3z2 -9z +3
- . 2

z-05)(z -2’ 05 <lz] <

As a check we find Z [ f (n)g{(n)] directly.
Z[2"u(—n) + u(n)][u(—n) + 0.5 u{(n})]
= Z[2"u(—n) + 28(n) + 0.5"u{n)]

S .
z—2 z—-05"

This checks with our previous result. It is important when finding
[ (n)g(n) to note that u(mu(—n) = (n) and not 0.

therefore K(z) = jzl<2Mlz| =05
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7-4 LINEAR SYSTEMS WITH RANDOM AND
SIGNAL PLUS NOISE INPUTS

In Chapter 3 we found that the output autocorrelation function and tif
cross-correlation of the input with the output when the input to a LTIC discr
system is a noise waveform with autocorrelation function R,, (n) were:

R, (n) = Cur(m*R,,(n)
x.«wﬁxv = }A:v* uuﬁau
R (n) © h(n)

or

k\d% |ku

= }sz ® mmxuﬂav

and R, (n) =

These results are shown schematically in Table 7-3(a).
Let us denote Z[R,.(n)] by S,.(z), ZIR,(n)] by S,(2), N_xiﬁav_
8,(2), ZIR,, (m)] by S,y(2), and Z[Cu(n) — h(n) @ h(n)] by T(z). We
:Qv the power spectral density of x(n), S,,(z) the cross-spectral densit
“x(n) with y(n), S,.(z) the cross-spectral density of y(n) with x(n), S,,(z)
power spectral density of y(n), and T(z) the power transfer function.
Using the convolution and correlation theorems, we find that Equat

TABLE 7-3

(a) ®)

x(n)

. H(z) = Z(h(n))
with | 10y - H(D)H(z™") A
Rys(n)

k &) | H{z) = Z(h(n)
k) + 2(k) T(2) = H(2)H(z™")

Case f (k) deterministic, (k) zero-mean

Case x(n) random random and uncorrelated

Time-Domaln Results from Chaptar 3.
g(k) = f{k)=h(k)
R (K} = Ciy (k) * Ry (k)
Ry (K} = h{k)*R (k)
Ron (k) = Ry (—K)
Transform Results
G{(z) = F(2)H{z)

Time-Domain Results from Chapter 3
Ry (n) = Cuu(m*R,(n)
R, (n) = h(n)*R (n}
R, (n} = Ry (~n)
Transform Results
Sp(z) = T(2)S:(2)
Sp(2) = H(2)S(2)

Sl2) = HE)Su(2) Spnl(2) = T{2) S, (2)

Properties Sem(z) = Eﬁu.._w;@v
Su(2) = Sz Spelz) = H(Z27'}Sm(2)
T(2) - Tz

San(z) = Sualz™)
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7-15 through 7-18 become:

Sy, (2) = [H(2)H(z 7)) Sk (2) (7-19)
where T(z) = H(2)H(z™YHY
and Sy(2) = Sy (2)H(2) (7-20)
Similarly,

S)x(2) = S (2)H(z™") (7-21)

These results are tabulated in Figure 7-3(a). Before applying these formulas, we
will comment on the symmetry properties of spectral functions.

7-4-1 Properties of Spectral Functions

The properties of spectral functions for continuous functions were developed in
detail in Chapter 5. The proofs involving the spectral functions for discrete
waveforms are almost identical to those for continuous waveforms except we use
summations instead of integrals. Table 7-3 lists many of the main properties for
discrete waveforms and a few of them will be demonstrated.

Sul2); Sp(2), T(2)
Power spectral and power transfer functions have the same properties since they
are the Z transforms of correlation functions.

EXAMPLE 7-11
Show that:
(@) Se(2) = See(z7)
(b) S, (2) = Spx(z7")
Solution
(a) Su(z) = 2_ Ry(mz™"
Letp=—n
and Sul(z) = 2_ Ryu(-p)z
= M \NkkﬂﬁvNﬁ.
(since R,.(p) is even)
- Therefore Se(2) = S (z7h) (7-22)
Since S, (z) = S,.(z™") we note that if z — a is in the numerator

or denominator, we must also have the term (z™! — a) or (z — 1/a)
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present. Any power spectral density function or power transfer fi

tion
T(z) = Z{Cu(m)]
has this property.
(b So(2) = 2 Ry(mz™"
letp=—n
Therefore S,(2) = 2_ Ry (—p)z*
=) R.(p)’
(since R (1) = R, (—7) ,v
and Sy(2) = S,(z7") ﬁ 3

EXAMPLE 7-12 .
Given the pulse response of a system is:

h(n) = [(—0.6)" + (0.5)"]u(n)

Solution
h(n) = [(—0.6)" + (0.5)")u(n)
therefore H(z) = N|+|Nolw + 7 INo.m , |z| > 0.6
222 + 0.1z
T (z + 0.6)(z — 0.5)
T(2z) = H(@)H(E™)
2z + 0.1z 2272 4+ 0.1z7"
T+ 06)(z— 05 (z' +06)(z - 05)
222 4+ 0.1z 2+0.1z

Tz + 0.6)(z — 0.5) (1 + 0.62)(3 - 0.52)

2z(z + 0.05)0.1(z + 20)
=06z + 0.6)(z + LNz — 05)(-0.5)z — 2)

—0.67z(z + 0.05)(z + 20)
“G106)z + 1.DE - 05z ~2)]

0.6 < |z} < 1.7

for
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The correlation of & (#n) with itself may now be found using the inverse
transform:

oty — L —0.67z(z + 0.05)(z + 20)

27j A (z + 0.6)(z + L.7)(z — 0.5}z — 2)

2"V dz

Forn=0

Cus(n) = 2_ [residues of the poles at z = —0.6 and 0.5]

—0.67(—0.55)(19.4) .
i Inze 0O

2.27(—0.6)" + 2.08(0.5)"

—0.67(0.55)(20.5)
1.1(2.2)—1.5)

(0.5)"

Forn<0
We can now find Cy;(7) as minus the residues of the poles at z = —1.7 and
z = 2, or using the fact R, (n) = R,.(—n), we have:

n<0
R, (n) = 227(—1.1)" + 2.08(2)"
=2.27(—0.6)"" + 2.08(0.5)™"

7-4-2 Deterministic Signal Plus Uncorrelated
Zero-Mean Noise

Table 7-3 shows a linear system with system function H (z) and power transfer
function T(z) = H(z)H{(z"'). The input is x(k) = f (k) + n(k) where f (k) is
deterministic and n(k) is a zero-mean uncorrelated noise waveform [Ry, (k) = 0]

with autocorrelation function R,,(k). In Chapter 3 we found the deterministic
output as:

g(k) = f (k)*h(k) (7-24)

and the output noise autocorrelation as:
Ry (k) = Chs (K)* R, (k)

and the cross-correlation of the input and noise as:

R (k) = h(K)*R,, (k)
and R,u(K}) = Rum(—K)
C.ﬁ:w the Z transform, we obtain:

G(z) = F(z)H(z) (7-25)

and as previously demonstrated:

Sm (2)

I

Z(Crn{(n))Sum(2)
T(2)Su(2)
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where T(z) = HH(™")
Sum(2) = H(2)Su(2)
m:v& .M.SaANv = :ANI~V.W:=ANv

These results are summarized in Figure 7-3(b).

EXAMPLE 7-13
Consider a linear system with pulse response h(n) = (0.6)"u(n) has
input x(k) = u(k) + n{k) where n(k) is an ergodic noise waveform
R,,(k) = 28(n). Find the output signal for k » 0, the output noise :
spectral density S, (z), the output autocorrelation function, and the
and output signa! to noise ratios for k » 0.

Solution
The Output Signal
H(z) = — |z1 > 0.6
=706 TV
z z
u\ANqu|o.mNI 1
Y(z) z
z  (z—06)z~1)
-15 " 2.5
z—06 z-1
—1.52 2.5z
h -
therefore Y(z) S 06 + p—
and y(n) = —1.5(0.6)"u(n) + 2.5u(n)
and for n» 0, y(n) = 2.5.
The Output Noise Power Spectral Density
MSEANV = »Wa:ANw‘NJANv
where S, (z) = 2and T(z) = H(2)H(z™").
-1
z z
@) - To6z27 - 06
_ z
Tz — 06)(—0.6)(z — 1.7)
—1.7z

- e —

(- 06)(z-17)
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therefore Spm(2) = G OMMNMNI ok 0.6 <|z]<1.7
1 —3.
Rom(n) = 2539 2" = o.oxw in®
Forn>0
R, (n)} = [residue of the pole at z — 0.6]
- oy
= 3.1(0.6)"
and by symmetry:
R (1) = 3.1(0.6)"u(n) + 3.1(1.7)"u[—n — 1}
= 3.1(0.6)'™

Signal to Noise Ratios
At the input:

S__ 1.

N R,(0)

=05
whereas at the output:
s 28
N 31
=201

SUMMARY

The two-sided Z transform was defined as F(z) = 25 _.. f (n)z* and if it exists it
does so in an annulus p, < |z| < p,. The behavior of f (#) for n < 0 places the
upper bound p, on | z| and the behavior of f (#) for # > 0 places the lower bound g
on E. The previously mastered material on the one-sided Z transform was
utilized to facilitate the evaluation of two-sided transforms. If /' (n) = f1(n)u(n)
uh@iér then F(z) = F,(z) + Fy(2), p < |z| < p, where F\(2) is the
ne-sided Z transform of f;(#) and F,(z) is the one-sided Z transform of So{(—n)
With z replaced by z7'.
oo The most ooBB.o:G occurring noncausal time functions are auto- and
h mm-no:.n_m._:o: functions whether associated with ergodic noise waveforms or
e correlation of the impulse response #(n) with itself. In Chapter 3 R, .(n),
R, (m), R,.(n), and C,,(n) were defined and studied. Here their Z transforms,
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the spectral functions, S,,(z), S,,(2), S,,(z), and T(z) were studied. Using
famous transform pairs, we obtain:

Zx(npry(w)] = XY (2)
Zx(n) @ y(n)] = Y(z)X(z™")
Z[y(n) @ x(n)] = X(2)Y(z™")

The time-domain results for a linear discrete system with pulse res
iav whose input is an ergodic noise i»<amo..8 with autocorrelation fu
R, (n) were:

and

R, (m)*Cy,(n)
h(n)*R..(n)

R, (n)
R, (n)

Using the Z transform, we find:

and

-

S,,(2) = Sx(2) T(2)
.M..kw.ANu = N.NANV.WMMANV

S,,(z) and S,,(z) are power spectral densities, S,,(z) and S,
Q.Oww-wﬂnoﬁm_ densities and T(z) = Z[Cu(n)] = H(z)H(z™") is the
transfer function. )

Inverse transforms were evaluated by either the use of partial fractia
residues. If F(2) = F,(z) + F,(z), where the poles of F;(z) are inside |z| = g
the poles of F,(z) are outside |z} = p,, then the inverse is found as f,(n
+ fo(n)yu(—n) by table reference.

Using residues the inverse transform f (#) is defined as:

and

S = Py .&,NTHMANV dz

and f () is found as:
Forn=0
S (n)y = _ [residues of the poles of F(z)z"~" inside |z| =
Forn<0
f(n) = = >_ [residues of the poles of F(z)z" ' outside |z| =
PROBLEMS

7-1. Evaluate the two-sided Z transforms of the following functions:

(@) fi(n) = 38(n + 2) — 3(n — 1) ) fo(n) = Ti_q a®*8(n + 2Kk)
(©) fsln) =2 @) fo(m) = 3n = Du(—n) + 3*u(n)
(e) fs(m) = Gn — Du(-n-1) (f) fe(m) = 2"u(~n — 1)
+ 3" u(n—1) + 3n(~1)"u(m)
(® fr(n) = (3n® — 2n + 200.5)"u(—n) + (3n — 2)(0.5)"u(n)
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(h) Without any work, what is the denominator polynomial and region of conver-
gence of the Z transform of (an® — 6}(—2)"u(n) + (en + A0.7)"u(—n

Y

7.2, Given:
x(n) — X(z), pu <zl <oy
y(n) - ¥(2),  pn<lzl<pn
w(n) — W(z), pu < |z| < py

Find the Z transform and its region of convergence for:
(@ [x(n) @ p(m)]=z(n) B} [x(x*p(n)] @ (n)
(¢) x(n) @ [p(n)*z(n)] wJ
7-3. (a} Prove whether or not:
[x(n) @ p(m)]*z(n) = x(n) @ [y(n)*z(m))
(b} Under what conditions of evenness or oddness for x(n) or y{(n) is:
(1) x(n) @ p(n) = y(n) ® x(n)
@ x(m) © p(n) = x(n)*y(n)
3 y(r) © x(n) = x(n)*y(n)

7-4. Evaluate the inverse transform of and plot f (n) versus » for:

22 + 322 4+ 1 2z?
(a) = R for all z An|+._|v1~. |z] <1
2z° 32> + 222 4 2
(© i fz] > 1 A&%, lz] <2
324220 ¢ 2 32042224+ 2
{e) Cre-2’ 2<]z|«3 A:ﬂlﬂ. |z| >3
&
z
(g 2<|z|<3

(z+3)(z-2)’

7-5. If possible evaluate:
(@) 3"u(—n) ® 2"u(—n)
() 2(0.6)" @ 2(0.6)"!
(e) (3 + n)(~0.5)"u(n)
D (2 + wyu(n)

7-6. Given a linear system with pulse response 4(n)

(b) 3*u(~n)*2"u(—n)
(d) 2(0.6)2(0.6)"
(F) (3 + m)H{(=0.5)"u(n)*(2 + n)u(n)

= {—0.8)"u(n) has as its input

x{(#n) = 4u(—n — 1) + (0.6)"u(#). Find the output y(z).
T0f x(n) — X(2), 02<|z|<2
and  y(m) —Y(E), 08<]z|<3

show:

Z[x(m)y(m] = X(2)*Y(2)

= ﬁ x(pyy|2)p dp

Carefully cxpiain for what annulus, p, <
poles and C on the p plane.

_i < pyy X(2)*Y(2) exists and plot the
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7-8. Use camptex convolution to find the Z transform of x (x#)y(n), where:
(@) x(n) = (—2)"u(n) and p(n) = nu(n)

®) x(n) = 2"u(—n — 1) + u(n) !

Ym) = Ry (0) = 5— 8, ()= dz

v(n) = (=0.6)"u(—n — 1} + (0.5)"u(n) 2nj
7-9. Given at the output.
—_ -12. (a). If the input to system (1) of the previous problem has R,,(n) = 10(0.6)', find
= X(2), <fz| = p < py 7-12. (a) P 3 o ,
x(n) @ on <zl Pz, the power spectral density of the output noise and the cross-spectral density of
and yin) = Y(2), o <lzl=p<pp the input and output noise S,,{z).

(a) What are the conditions for x(n) and y(n) to be stable?
{b) List when the following are stable, for x(n) and y(n) stabie; and if they m. .
unstable, give a specific example for x(n) and y(a):
(1) x{m)p(n) (2) x(mysp(m)  (3) x(n) @ x(n)
(4) x(n) @ y(n) (5) y(n) @ x(n)
Sketch pole diagrams for each case.

{b). Give a pole zero plot for S, {z), §,.(z), and S,, (2).

{c). Find the signal to noise ratio at the input and output for # » 0 if an input signal
f{n) = 6u(n) is added to the input noise.

7-13. A power spectral density S,,(z) or power transfer function T{z) may be written
as:

7-10. Given a linear system with pulse response h(n) = (—0.8)"u(n) has as its $:(2) =G(2)G(z™) or T(2) = H(z2)H(z™")
deterministic signal £ (#) = (—1)"u(n) plus zero-mean independent whit
n(k) with autocorrelation function R, (k) = 65(k):

(a) Find the output signal g(n) and spectral densities Spn(2), Sum(2), and S
(b) Do the spectral functions possess their expected properties?

(¢) Find the autput mean square flucinations nr*(n) using residue theory.

where G (z) and H(z) have their poles or zeros inside the unit circle z = 1.
Design a “shaping filter™ that transforms white noise with S,.{z) = 1 to noise
with a power spectral density:

—1.5z

Shl?) = e

05<|z] <2
7-11. The power transfer function is defined as:

T(z) = HEH (™) 7-14. Which of the following functions qualify as power spectral densities?

(a) Find the power transfer functions for the following systems and plot ¢ @ -0.5z ®) 0.5z
zero diagram: 24252 +1 2P+ 25z 4+ 1
(0 0.5

R -z
€ 35— @ —
X{z) z% 25z + 1 z? - 16

) 2z
(z + 2)*(z + 0.5)°

Y(z)

I
A
I
)
]
[

(b) If the input to each of the systems of part (a) is assumed white noi
8. (2) = 2, use residue theory to find the mean-squared output fluctu




