NAME:

University of Massachusetts Lowell Department of Electrical and Computer Engineering EECE 5090 Linear Systems
 OPEN BOOK Due: RETURN SOLN PDF via email by 1:00 pm EST TUES

1. Find the output $y(t)$ given the input $x(t)=e^{-t} u(t)$ and the Laplace transform of the linear-time invariant system is given by $H(s)$

$$
H(s)=\frac{s+2}{(s-2)(s+4)} \quad-4<\operatorname{Re}(s)<2
$$

a. Find $X(s)$ and its ROC.
b. Find $Y(s)$ and its ROC.
c. Find $y(t)$ via contour integration. Draw the contours used in your evaluation.

2. Consider the causal discrete time system given by

$$
y[n]=\beta y[n-1]+x[n]
$$

a. Determine the transfer function $H(z)=Y(z) / X(z)$ and the ROC
b. Find $y[n]$ given that $x[n]=\delta[n]$. Denote the ROC of $Y(z)$
3. Consider the Laplace transform of the time function $y(t, z)$ which is given by

$$
Y(s, z)=\frac{1}{s+a+b / z}
$$

where y is right handed in time and a, b are real and positive valued.
a. Draw the ROC of Y in the s-plane
b. Find $y(t, z)$.

4. Consider the discrete time signal

$$
h[n]=\delta[n]+\beta \delta[n-1]^{‘}
$$

a. Draw $h[n]$
b. Find $H(z)$ and its ROC
c. Given $G(z)=1 / H(z)$ determine the ROC of G required to render $g[n]$ lefthanded
d. Find $g[n]$

