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may be written as:
@) = fel)+ 3601 — nT)
=0

(¢) Using the convolution theorem, verify the Laplace transform of the se
periodic function £ (r) is:

Fr(s)
Fis) = 37
(d) Find the inverse transform of:
P —e"
-, Re(s) = 0
G(s) 0™

and plot g(t). .
(e) Plot the pole-zere diagram of G{(s) and verify your result finding g{¢) by usi

the residue theory.

4-10. Given:
gy =2 f(t—2nm
n=0
where fir=1, O<t<l
=0, olherwise

is the input to a system with system function # (s} = 2/(s + 3). Find and plot ¢
zero-state output yp (1).

4-11. (a} Find 8(s) = ¥'(5)/X(s) for the system shown.
{b) For what values of K is the system stable?
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Chapter 5°

The Two-sided Laplace
Transform

INTRODUCTION

Chapter 5 treats the two-sided or bilateral Laplace transform whose main
application is the solving of LTIC continuous systems with random or signal plus
random inputs. The chapter considers the transform analysis of the continuous
material of Chapter 3.

The material is traversed by means of what is now our standard treatment
of any transform. The different stages are:

1. The transform is defined and a number of transforms are evaluated. We
utilize to the fullest our knowledge of one-sided transforms to evaluate
iwo-sided ones.

2. The properties and theorems are given and attention is focused on the
transform of convolution and correlation integrals.

3. The inverse transform is treated either by using previously mastered
partial fraction techniques referring to tables, or using the residue
theory from complex variables,

4. LTIC systems are solved for the cases of random and signal plus noise
inputs,

S-1 DEFINITION AND EVALUATION
OF SOME TRANSFORMS

The two-sided or bilateral Laplace transform of a real function /() is defined
as:

Fsye [ Cf@e dr (5-1)
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for complex s = ¢ + jw. Fp(s} if it exists will do so for a region of the complex 3
plane, 5, < Re(s) < g5, called the region of convergence. Normally, the subscrip
“8" is excluded and it will be clear from the context whether the ane-
two-sided Laplace transform is being used. Again, alternate notations, .L[ f{¢#)
F(2) and f(1) «~ F(s) will be used.

A number of transforms will now be evaluated and the concept of th
region of convergence will be expanded.

EXAMPLE 5-1
Find the two-sided Laplace transforms of the following functions and stat

the region of convergence:

(a) fi(2) = 3e¥u(t)
(b) fo(2) = 3e™u(~1)
[(©) £i(2) = 3e7u(t) + de'u(—1)
(@) fi(t) = e u(1) — 4e'u(t)
&) f5(t) = = 3e X u(—1t) + de'u(—1)
(f) f(6) = Aje™u(t) + A,e”u(—1)in general for all appropriate real o an
8.

Solution

(a) £ (1) = 3e*u()

Therefore Fl(s) .\. 0 Oe ¥ dr + ,\o.s 3e%a dt

Re(s) > 2

§ -2

£(#), Fi(s), and the region of convergence are shown in Figure 5-1(a)

(b) f,(1) = 3u(—1)
Fyls) = % ® 3¢~ gt
= [ P30 ar
3 N |9 .
-5 gli=tg Jut . writings =0 + jw
3
-0, .
7 ifo<2
since then ¢¥=7-" = 0 for2 —6>0
Therefore Fy(s) = — ,...Iulm Re(s) < 2

f2(t), Fy(5), and the region of convergence are shown in Figure 5-1(b).

fin Fis)= H.H fitye ¥ dr Region of Convergence
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Figure 5-1 The two-sided Laplace transforms and their regions of convergence for
Example 5-1.
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(@ f5(8) = 3e"Mu(t) + 4et'u(—1) .
1}
Fi(5) = defe™dt + | T3e e ¥ dt
()= [

4 d 3 -
_ (-1-5)¢ Y iy
_Imm |s+|.nlmm _o
—4 . . 3
= +0if +0]|if +
5s—1 =l o= =21 G.ITN
-5 —11 2 < Re(s) |
= : — e
9|C§+wv < §) < +

For this function which exists for both positive and negative time we note 3
that the behavior for negative time puts an upper bound on an allowable ¢ §
and the function behavior for positive time puts a lower bound on an |
allowable 0. Therefore we obtain the strip of convergence o, < o < 5,. f5(1),
F(s), and the region of convergence are plotted in Figure 5-1(c).
@) fu(t) = Be™ — de*"Yu(z)

3 4

+0 - +0
s+ 2 ifox—2 g —1 ifo=41

Fy(s) =

—5 — 11
(s — )s +2)
We notice the bilateral transform expression is the same as in part (c) \

‘but the region of convergence is different. fi(1), F,(s), and the region of
convergence are shown in Figure 5-1(d).

(e} f5(t) = —3e*u(-1t) + de'u(—1)
3 4

+0 - +0
s+ 2 fac—2  § — 1 if gt

Re(s) =1

Fy(s) =

-5 -11

(s — D(s +2)
Since e ¥u(—¢) is an increasing exponential of negative time its
convergence factor ¢ < —2 determines the region of convergence.
Again, the Laplace transform expression is identical to parts {c) and
{d) but the region of convergence is different. £;(¢), Fs(5), and the
region of convergence are plotted in Figure 5-1(e).

(D) fo(1) = Aie™u(t) + A'u(—1)
It can quite easily be shown or by now be clear that:

Therefore Fi(s) = Re(s) < -2

= ol -2 o
5 —« fome & — 8 ifo<g
A\A_ — kAMv.m_ — lum + \&MQ .
- F
G- @G- B Hozafo<s
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The bilateral Laplace transform will exist for all & and @ such that o <
8 and then the region of convergence is & < Re(s) < . The different
possible situations for f,(t) are shown in Figure 5-1(f).

5-1-1 Two-sided Transforms Using One-sided
Transforms

The evaluation of two-sided Laplace transforms involves the same amount of
work as doing two one-sided Laplace transforms and indeed a table of one-sided
Laplace transforms may be used to find two-sided ones. We will now develop this
technique. Given:

S@) = () + f(Hu(—t)
F(s) = Fi(s) + [ ° fl)e™ de
~

Letting r < —p, we obtain:
dt = —dp, —w <t <Ogivesoo>p >0

F(s) = Fi(s) + [ °fil=pe™ (~dp)

and F(s} = F\(s) + LLA:(—)u(r}] (5-2)

=5

If £,(—t)u(t) has a region of convergence ¢ = a3, then f;(t)u(—1t) has a region of
CONVETEENCE ¢ < — 6y,

EXAMPLE 5-2
Using Equation 5-2, find the iwo-sided Laplace transform of:

(@) f(1) ~ 'u(—1)
®) f() = e 2ut) + te u(—1)

Solution

(a) F(s) = L[e*u(t)]

i —1
s4+2 |y 52

(by () = 3e *u(?) + te”'u{ 1)

o< 2

I

Using Equaticn 5-2, we obtain:
3

F(s) = + L[ —te'u(n)] _

542
3 N -1
Tsr2 -1

F=—F

. o> —-2{No< -1

A= —
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3 1
Cs+2 {(1+sY

355+
s+ (s - DY
Example 5-1 should now be repeated using Equation 5-1.

2w -1

There are a few very important functions for which a two-sided Laplaced
transform does not exist. The functions f(z) = 1, f2(t) = Cos (wet + ¢), and;
J(t) = Zz__, glt — nT) a periodic function, do not possess a Laplace transformy
as each function for ¢ < 0 requires ¢ < 0, whereas the function behavior for ¢ > 04
requires o > 0. Therefore, no value of s exists for which the transform converges.
These functions are not to be confused with the causal functions: _

ft=in

2 glt — D) ulo) |

M= — 3

A@) = u(2), and f3(1) =

£(1) = Cos (wof + P)ult),

Finally, we are rarely interested in the two-sided Laplace transforms o
functions whose transforms are not the ratio of two polynomials in 5. As we wil
see, the most common functions for which we find two-sided Laplace transforms;
are correlation functions for finite energy waveforms and autocorrelation func-
tions for ergodic noise waveforms. Both these type functions are even and fory
positive or negative time may often be represented by the product of polynomials
and exponentials.

5-2 IMPORTANT THEOREMS OF BILATERAL
LAPLACE TRANSFORMS

Table 4-2 of Chapter 4 listed an extensive set of theorems and properties of the3
one-sided Laplace transform. Some important theorems for the bilateral Laplace}
transform are given in Table 5-1. Since the convolution and correlation theorems?
are of the utmost importance when applying this material to systems withj
random inputs we will prove and demonstrate these. Discussion of the complex
convolution theorem is deferred until after the inverse transform is considered.

EXAMPLE 5-3
Prove the convolution theorem m:a comment on the region of conver-
gence. ;
Solution. The convolution theorem states that if:
f@y—=F(s), o5<0<0yg
and g(t) — G(s), Oy <O < 0,
then f()*g(t) «— F(5)G(s)
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TABLE 5-1
Theorem Time function Two-sided Laplace transform
Linearity ax(t) + by(1) aX(s) + bY (s}
g = max (0, 6, ), ¢ < Min (0., 6,7)
Time-scaling x(al) FR s Qo <@ < a0, a0
la]” Vet am, < o < ag,, a=0
mEE_.._m x(r — a) e ™ X(5), ¢ < 0 <0y
Convolution x()xp(n)
=[x -pdp XK@Y (o <a<a) N (@, <a<a,)

x(1) ® y(0) ..__ .
Y(5)X{(—5), loy,<o=a ) (-, ,<a<—0,)

Cross-correlation

-[Trxte - v dp
x{) ® x(1)

Autocorrelation
X(s)X(-3),

max{r,, ~ 0} <g=<min{o,, —a;)*

- [ “xpxtp - nap

For causal functions all one-sided Laplace transform theorems carry over.

¥t ~ X(3),
¥ = Y5,

LI PR S S

—.-.—:hqﬂn—!n

By definition:

LU - [ [ “(p)gtt - p) dple™ di

Interchanging the order of integration, we obtain:

LLfwen) = [T fp) [ gt - pedt|dp

Lettingt — p = u:
dt = du,

e gives —oo < U <

Lo re)| [ 7 gtwe e du|dp

L[ f(D)#g(1)]

J 1 @eG(s) dp
G(s)F{s) (5-3)

If we write R(s) = G(s)F(s), then R(s) will converge for all s for which
both G(s) and F (s5) converge. For example, if F(s) converges —3 <o < |
and ((s) converges —2 < o < 4, then R(s) would converge —2 <o < 1. In
general, R(s) converges over the intersection of the points

(o, <o <o) (Mo, <o <a,) (5-4)
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1
and then Y(s) = - g0
s’

192 5/THE TWO-SIDED LAPLACE TRANSFOR

EXAMPLE 54
Find the transforms of the following functions and denote the Rm—ozm of
convergence if the transform exists: By the convolution theorem:

@) fi(1) = e *u(t)re'u(~1)

4
Lx(eyrp(t)] - . ~2<g=<2Mao=0
(b) f5(1) = e¥u(t)re™"u(—1) s(s + 2)(s — 2)
© muuu_h_*tmmv 4 ; )
Solution (s + 2Ns — 2}’ e

Our anticipation of evaluating inverse two-sided transforms should be

-2 . . N .
{a) Let x(2) = e *u(t) mounting since we now have an alternative to convolution,

and then X(s) = 0> =2 EXAMPLE 5.5

Prove the correlation theorems:
Let y(#) = €'l —1)

1 @ L[x(r) @ y()]} = Y{5)X(—s)
and then Yis) = — ——, o< 1 by L[x(2) ® x(£)] = X()X(—s3)
5s—1
Solution
By the convolution theorem:
-1 (a) By definition;
Lx(t)xp(1)] N%, o> -2{Vo<+l1
§ - = = t
LI @ y0] = [ | [ vp)xtp - 0y dple= s
= ml , —2<ao<+1 ) . . .
s+ 2(s-1) Interchanging the order of integration, we obtain:
b - - :
() Let x{(1) = (1) LI Dy = [ “yp)| [ “x(p - 1y e di|dp
1 = -
and then X(s) = o 77 2 Substitute p — =1
Let p(t) = e~u(—1) LI @y = [ “wp)| [ 7 x(hee (~db| dp
-1

and then Y(s) = a1 °° -1 - .\. y(pe ™ dp \. x(Ne’ dl = Y(n)X(-5)  (5-5)

. ) where C(s) = ¥(s)X(—s) converges for all s for which both Y(s) and
By the convolution theorem: X(—s) converge. To interprete the region of convergence for X(—s), we

-1 note that if X(s) contains a pole at s = —s,, then X( ~5) contains a pole
=2{1e<—1 I

at s = 5. With a little more thought we conclude that if the region of
convergence for X(s) is o, <o < a,,, then the region of convergence for
X(—s5)is o, <« —0 < g, 0r —0, < ¢ < —a, and the region of
convergence mo_, C(s) is :._n intersection of the points:

Sinceos > 2 (o< —! =¢the rmﬁ_mna transform does not exist. .
(e} Let x(1) = e~ — e ¥u(t) + ¢’ u(—1) and this has a Laplace :‘»:m.
form: (0,, < <0,) N (-0, <0< —a,) (5-6)

(b) In the case p(r) = x(r) we find by the cross-correlation theorem that:

Lx(1) @ x(1)] = X()X(—s) (5-7)

1 1 —4
= — = . ~2<a<2
X(5) s+2 s-2 (+D-2)

Let p(¢) = u(?)
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I the region of convergence for X(s) is o) < ¢ < a5, then X(s).X(—s) has
a region of convergence max(s,, —0,) < o < min(s,, —a, ) if it exists.

EXAMPLE 5-6
Find the Laplace transforms of the following correlation functions:

(@) e u(t) @ e u(r) = C (1)
(b e 'u(t) @ e*u(—t) = C, (1)
(©) e*u(~1) @ e~'u(t) = C,.(1)

Solution
]

- —
(a) e “u(1) T

1 1
(s+2)(—s+2)

-1

Lle ™ u(t) @ e u(t)]

H?.+m:,qlmv. c>—-2Mo<2
—~1
Hmﬂ. —2<o< 42
b RQVHQL:QVT..I_|. o= —1,
s+ 1
2 —1
i)y =eu(—1) ———, o< -2
§—2
Therefore  Lfe'u(t) @ e™u(—1)]
B -1 l
r.qlulm.T_
_ 2MNe<l:
T CEE A
_ 1
G- —1y %

fl —1
S+ 1ls ~ 20| o=
1

Ha, o> —1 MNe> -2

i
- > —1

s+ D(s+ 2y

(€} L['u(—1) @ e"u(1)]
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The inverse Laplace transform will provide an alternative approach for
correlation. For example, when finding x(z} @ y(¢) we have the choice of
evaluating:

[x($) @ y(n)] = .\,sw@uih —1)dp  or for example

—m

2t —t -1 I
[e ﬁmlﬂv@m chﬂnﬁ ﬂa, o> —1

Close examination of Example 5-6(a), (b), and (c) would lead to general
relations concerning symmetry of the poles for the Laplace transform of
correlation functions, which will be developed later in the chapier.

5-3 THE INVERSE TWO-SIDED LAPLACE
TRANSFORM

The uniqueness theorem for the inverse two-sided Laplace transform states:
LLSEON = f() (5-8)
and in this section we discuss two techniques for finding inverses. These are:
1. the use of partial fraction expansions plus tabie reference.

2. the classical evaluation from the formal definition of the inverse using
the residue theory from complex variables.

5-3-1 Inverse Transforms Using Partial Fraction

We confine our discussion to Laplace transforms which are the ratio of two
polynomials in s:

N(s) bus™ + bpis™ 40 -+ by

Fs) = =
() D(s) af +a, 5" +... 44

where the order of D(s) is at least one order higher than N(s). There is associated
with F(s) a region of convergence, ¢, < ¢ < ay, where D(s5) contains two
consecutive poles at s — ¢, + jw, and 5§ = a; + jw, and we assume any
cancellation of poles by zeros has been carried out. From Section 5-1 we know
that a pole of F(s) at s — —s, where Re(—s5,} < o, contributes de=""u(r) if s, is
reat and a pole of F(s) at s = —s, contributes Be~**u(—1) if s, is real and —s, >
2. We now use previously learned partial fraction theory to find inverses. A short
general table of two-sided transforms is given in Table 5-2, which we will utilize
when finding inverses.
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F{s) Region of convergence {#)
A
o> —o Ae™™u(t)
£+ o
4 Ae~"ul)
‘Alh.l.-?lQv = —a — A€ 13
A Ate™™u()
m]hcnlum o> — e "
A Ate™™u{-1
a T = —i¥ - -4 u
A5 + A, g —e ot As —ad, _,
G T F e real, A real and positive e\ Ay Cos Bt + ————Sin fr | u
A, A, 2~ 1
% o< —uo ~e™ 4, Oowuu._.k __QD‘\_ Sin8r |u(
EXAMPLE 5-7
Find the inverse Laplace transforms of the following functions using parti
fractions:
IJs+ 2
F{is)=——"° -1 2
@ B = 06 T <<
35+ 2 :
b} Fols) = ——————, F < — 1
(b} F{s) T 62D o <
35+ 2
Fis) = ————, 2
© 5 - Ty 77
25 + 3
d) F,(s) - . —4 ~1
@ ES - T HEr T D 0=
Solution
35+ 2
F -— -1 2
@A) - T 6 =2 o=
A N B N C
Ts+l s+ DT 52
where C — 8/(3)" -~ 0.89 and B = —1/-3 = 0.33. Letting s - 0, we}
find: ]

2 1+o3+9%
-2 . —2
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Therefore A=—-1-033 +0.44
= —0.89

Fo 089, 033 089
' s+1  Gr T2

-1l wg<2

and from Table 5-2:
S1(1) = (~0.89¢™" + 0.337¢ Yu(r) — 0.89e%u(~1)

F\(s) and f,(¢) are shown in Figure 5-2(a).

s _& .J:U
I +2 \
e NP e
— 2F
\ 085 (~0.89 + 03310
{a)
Q fo 0
342 9
{5+ 1¥{5-2) ~\\ T :
(0.8% - 0.330e™" — 0.8
()
e £
oI +2 ., \
{5+ 1¥2(s — 2y - a _ ;
\w (—0.89 + 0.330)e 7 + 0.89¢2¢
9]
—e 1| /20.44 Cos(1.4: — 45°)]
foa
oW +3
s+ 45t + 25 + 3y a t

~0.45°%

id}

Figure 5-2 The transforms and their inverses for Example 5-6.




198 S/THE TWO-SIDED LAPLAGE TRANSFOR
35+ 2
& N‘I- = ¥ J—
®) 1) -5 Dis~2 o<1
~ —0.89 . 0.33 0.89 1
s s+ 12"y Ty o<
Therefore S2(8) = [0.89. _ 0.33ze~ _ 0.89e*]u( 1)
Fa(s) and £3(1) are shown in Figure 5-2(b).
35 + 2
¢ Fi(s) - T
Au wﬁhu ﬁh+ :mAhI.MV o> 2
Therefore L) = [-0.89¢ 033t~ + 0.89¢*]u(r)

Fy(s) and £,(8) are shown in Figure 5-2(c).
25 + 3
d) F, -
(d) 1{s5) ﬂ;.
N 2s + 3 .
GGy 2]

254+ 3
(s + 4)(s + ] + il 4) (s + 1 - Jjl.4)

~045
5+ 4

ek R

A
S+1+4414

A .
l||||||_|||.|||. Sl I |
S+1—j14 -

+ +

21— j1.4) 4 3 .
where 4, - 3 T AN (<aE) T 0.22 + jo.22 and
Ja8) = —045e~ult) — o044 Cos 1 4,

Fis) and £,(1) are plotted in Figure 5-2(d).

+ 0.44 Sin | Aty —

From Example 5.7 it ;
inverse two-sided transforms
one-sided case. Now poles
time and pick Up a minus

by partial fractions was already mastered for thed

to the right of ¢ contribute to the function for negativ
sign,

m.m.n _:<m_.mo ._.io.mmnma _.mu_moo Transforms Using
Residues :

v
The Appendix on complex variables [ists so

pertaining to System analysis and they will be
Laplace transform of

N($), with the region

me of the more important resul
utilized in this section, The invers .
F(s) = N(5)/D(s) where the order of D(s) is more than;
of convergence g, < ¢ o, is defined as: “

S@) = £y - L

LAY +5t
57 ,\ T F(s)er ds

™!
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where Cis the straight line () =0+ j8, —x < 8 < oo .ﬁ.:o contour Cis mwcssmn
Figure 5-3{a). We now discuss the evaluation of Equation 5-9 for the cases of ¢
positive and negative.

t>0 . .
memmwﬁ closing the contour C to the left with contour C) as shown in Figure
mLmAE. For t > 0, F(s)e*™ — 0 at all points on C, and by Jordan’s lemma

\ﬁ..__ Fi{s)et™ ds = 0,

L foom psyerds + F(s)e* ds
Therefore Fi = m m\..,d_e F(s)e" ds 27) .\n._
LI R
N.h‘-.._. C+ 0
= Z [residues of the poles of F(s)e* to the left of s]  (5-10)
Fort <0

i i i (5 as shown in Figure
ider closing the contour C to the right with contour C, ]
mﬁowqmww n_u_,M_. t .nmo. F{s)e" — 0 at all points on ¢, and by Jordan’s lemma

.hu F(s)e" ds = 0.

|

Therefore = 2

. 1
«\1.«1& nﬂ,ﬁhvma ds + —

o —jeo 2xj
C

1 :
ulﬂ F(s)e' ds
2wjJesc ()

—Z [residues of the poles of F(5)e" to the rightof ] (5-11)

£ '\q. F(s)e" ds

The minus sign occurs because the closed contour ¢ + G, is traversed in 2

(a)
Figure 5-3 (a} The contour C for finding the inverse Laplace transform;
« With C, for ¢ = 0; (¢) closing C with ¢, for ¢ < 0.

(b} Case r=>0 (¢} Caser <0

{b) closing C
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clockwise manner. Summarizing, we conclude:

If F(s) = N(s)/D(s), 6; < ¢ < ¢, where the order of D(s) is higher than
N(s), then

Fort=0

St} = Z[residues of the poles of F(s)e” to the left of o]
Fort <0

J(t) = —Z[residues of the poles of F(s)e* to the right of ¢]

In addition, the uniqueness theorem for the Laplace transform is:

L7 [ rpredple ds (5-12)
n.a_l.__“s —u
which says that a time function and its Laplace transform constitute a uniqug
pair.

We cvaluate some previously considered inverses using residue theory.

1
.::Nmaﬂ.

EXAMPLE 5-8
Using residues, find the inverse Laplace transforms of the followin,
functions: g
1 .
() w.@u@#m, o< =2
1

®) Fi(s) = — 5, o> -2 :

s+ 2

F = . -1 2

() Fi(s) GIDG-D < g <

3s + 2
d) F,(5) = —1
(d) Fy(s) Gr G2 °F

35+ 2

- , 2
© RS - ey 7
25 + 3

f - 4 -1
() Fils) (s + DG+ 25 + 3 o=
Solution

therefore f(¢) = 0,if r > 0.
For t < 0, C + C, encloses the pole at s = —2

e~ | fi0)
2|
|— N
s+ 2 Q \HM _ ¢
fa) L
ﬁ.|mh
1
s+ 2
.\.u:v
Is+2 o
.89 2 (—0.89 + 0.337)e" ¥
{c}
% ll..l.-ﬁj?ﬁo Falt)
3+ 4. v
s+ 13s = 2) -1 1&
N
(0.89 — 0330 ' — 0.8%7
10 id)
¥ S50t}
s+ s - -
\ (-0.89 + 0.33¢)¢ 1 + Q8921
S \x
(e}
PG fete)

A
T

- 11044 Cos | .4+ +0.44 Sin | 4]

(f)
Figure 5-4 The inverse transforms for Example 5-7.
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—1

andthus £y - _ | residue of poleats — —7 for e
s+ 2
-1
=—i{(s+2) e
5+ N F=-—2
- mluq
Therefore S = e u(—y)

(b) £2(£) = 0,1 <0as C + G, encloses no poles in Figure 5-4(b). For ; {
0, 1

1

J2(t) = [residue of poleats = —2 for e”
s+ 2
Therefore  f,(r) = e *u(t)
© Fils) ~ ﬂw_ﬂmﬂq l<o<2
as shown in Figure 5-4(c).
Fort=(Q
St} = [residue of the second-order pole at s = — | for F(5)e]
d13s+2
T ds s-2°¢ -
- W.uu_. te! 4 o I|||.||J||||A.q - Bmvllmwwf,q il —
=0.331e7" — 0.89¢
Fort <0

5i(t) = — [residue of pole at s = 2 for Fs)e"]

3(2) + 2
ENTIY

= —0.892*
Therefore  f£,(1) = (=0.89 + 0.331)e 'u(y) ~ 0.89¢%u(—1)

This result agrees with Example 5-7(a) where the inverse was found by
partial fractions. ._

Qmﬁ

Is + 2
d) Fs) =——T° —1
@ Fils) (s+1)%s -2 ©°<
as shown in Figure 5-4(d).
f(t)=0fort=0

since there are no poles to the left of 4.
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Fori <0

— [sum of residues of poles of F(s)e]
(~0.33te™ + 0.89¢~ — 0.89¢™ Yu(—1)

ng

which agrees with Example 5-7(b).

3s+2
(s + 1)4s — 2y’

ag=2

(e} Fe(s) =

as shown in Figure 5-4(e).
Sty =0, t<0
since there are no poles to the right of o.
Fort=0
J5(t) = [sum of the residues of the poles of F{s)e"]
Therefore  fi(t) — (0.33te" — 0.89¢" + 0.89*)u(s)

f) Fy(s) 25+ 3 —4d<g< 1
() Fe(s 5+ + 25 ¢ 3)°

as shown in Figure 5-4(f).

25+ 3
DL+ A+ - jla)

Fort>(
Ss(t) = [residue of the poleat s = —4 for F(s)e™)
- mm-a
= ~0.45e"%
Fort <o
Je(t) = — [sum of the residues of thepolesats = —1 — jl.4and —1 + jl1.4]

2-1-j14) ¢ 3,
(3 — jL4)(—/2.8)

where r =022 + j0.22
Je(t) = —1(0.22 + J0.22)et 119 4 (g 99 — Jj0.22)et -1 /14
= —[€7'(0.44 Cos 1.4¢ + 0.44 Sin 1.4¢)]

(—1—fl4y + w.%wﬁl_ +J1.4)¢

Finally, as in Example 5-7(d) we obtain:

J6(t) = —0.45¢ *u(1) + [—0.44e~*(Cos 1.4¢ + Sin LA u(—1)
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5-3-3 Complex Convolution

Complex convolution is an excellent illustration of the use of residues
transform theory. We now derive the Laplace transform for the product of t
functions and illustrate complex convolution for some simple cases.

EXAMPLE 5-9
Prove:

L@ = o= [ ¥(p)X(s — p) dp,

- o, < Re(s) < o,; §
2nj Ya—je

Pay particular attention to the relation between # and s.

Selution
Let x(1) ~ X{(s), o < 0 < Opy
and y(8) — ¥Yis), Ty <0 <0,

The product function x(#) y (¢) must then have a region of convergence o,
+ 0y, <0 <0, + 0y, This is so because .\_“s_xs |e = dt exists for ¢ > od
and .\o.s_ic_mé dt exists for the o > gy, and from the concept of t

region of convergence then .\cahkspye_mla dt exists for ¢ > o, + o,
Similarly, the behavior of x{¢)y(2) for t < 0 implies ¢ < 6, + 6,,.

Lix@y®] = [ “x@y@we di

—on

= —. o+ oo
L = [Ty e dpletar

- Nq_.g__ D&.J__a

where 0,, < 6, < g,,. Assuming it is permissible to interchange the order off
integration, we have

L{x@y @] : % ¥ip) \ " x(e P dt | dp

2xj Joyia —e

’ m a+ fm
— X(s —p)d,
T n\ Y(p)X(s - p) dp

X(5)*Y(s)

We must be very careful with the allowable values of a. X(s)*+Y{(s5) exis .
for o, + 9, < 0 < 0,5 + 0,,. In addition, to satisfy ¥(p) a must be su
that g, < a < o, and to satisfy X (s — p) @ must be such that g, < Re(s]
T a@<o,0r —o; + Re(s) < @ < —a,y + Re(s). To clarify any confusi \
about this, we now solve a few problems. ‘
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EXAMPLE 5-10

(a) Given:
x(t) = e*u(r) and y(0) = tu(s)

use complex convolution to find the Laplace transform of x(#) y (¢).
(b) Given:
x(ty = e'u{-1) + u(®) and y() — e¥u(—9)

use complex convolution to find the Laplace transform of x(#) y ().

Solution
{a) x(1) = e*u(s)
. ' : 2
therefore (s) = T3 o o>
y({t) = tu(z)
1
thus ¥{s) = =L o> 0

x () p() will exist for o > 2.

— I atjo | 1
Oy - 5 .m._m e L

L4

where Re(s) > 2 and there is a first-order pole at p = 5§ — 2. We note
that Re(s — p) > 2, and therefore Re(s) — a > 2 or @ < Re(s) — 2, and
in addition, a > 0. Figure 5-5(a) shows a plot of the two pales at p — 0
and p = 5 — 2, and since Re(s) > 2, the pole at s — 2 is always to the
right of the pole at p — 0. Using the inside—outside theorem, we may
close C to the left or right,

Therefore x(#}y (1) = [residue of the pole at p = 0

(when we close the contour
to the left)]

d 1
Cdp|s—p ~ 2o
=—(—-—p- NVLAIC_?Q

1
(s —2)°
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where the transform exists for — < Re(s) < 3 and a for the path is
such that 0 < @ < ! and Re(s — p) < 2 or Re(s) — 2 < a for any
acceptable s. Figure 5-5(b) shows a plot of the polesof —1/p(p — 1)(p

_ CoplBl=a+jf, —wo-lf <o
qﬁ where 0<la <5 — 2

PN Re — 5 + 2) where (s ~ 2) < a < 1 for any acceptable Re(s). Again, we
can find x{#) y(¢) in two ways by closing C to the left or right
_ .«Q:QV = [residues of the poles
(a) atp=0and p =5 — 2]
_ -1 N -1
_ Ch C pBr=a+jb, —o<p <o =5+ 2) (s —2)(s—3)
i wheres — 2 <g < |
s-2 ilm+wl_llu

0 e rep Go2DG-3) " 5_3

Also, x(1)¥(#) = —[residue of the pole at p = 1]
-1
. BT
Figure 5-5 (a) Poles of ¥{(p) and X(s — p) for Example 5-9(a); (b) poles of X(p) a
¥(s ~ p) for Example 5-9(b). -1
- as before
5s—3
Also, x(2)p(2) = —~[residue of the poleatp — 5 — 2 - -1
{when we close the contour Therefore x(Oy(t) = ——, —w < Re(s) < 3
. 5§s—3
to the right))
1 The integration is very tricky. We carefully note the poleatp — s — 2 is
=—[(p-(s-2)) always to the left of the pole at p = 1.

_.«un_”|ﬁh-|h+ Mz p-5=1

1 Although using such tricky mathematics to find the Laplace transform of

- (s -2 easy product functions may seem cumbersome, trying to understand the principle
1 18 worthwhile. Historically, complex convolution was instrumental in the devel-
Therefore  L[x()y{1)] = ——, a2 opment of the fast Fourier transform.
(s-2) A very important application of complex convolution is to relate the
which can easily be verified directly. Laplace transform of a continuous function f () to the Laplace transform of
(b) x(1) = e'u(~1) + u(f) S¥() = 127, f(nr)é(t ~ nr). ¢.<m will carry this out for causal functions and
| H leave the general case as an exercise.
and \a\.@vﬂi[_l_.l, <ol
5 - $ EXAMPLE 5-11
" -l 0<o<l Given f(r) has a Laplace transform F(s) with ¢ > o,, use complex
Cs(s =17 convelution to find the Laplace transform of:
y(®) = eu(~1) =
SO =72 f(an)é(t — nr)
-1 D
and Yis) = p— o< 2 .
Solution. Using the sifting property of delta functions £ (£)6(z — a) =
Using complex convolution, we obtain: F(@)8(t —- a), we obtain:
I farje -1 -1 - :
x(y(#) = -— d, . (1) - -
TIOR M\a.:_a T Tr— S0 = 2 of (nmyta — )
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EXAMPLE 5-12

I
~4
~
-~
oy
ot
GMB
=% ]
———
e
|
=
1.‘
e

]
+
™

3
+
3]

&
+
-+
m|

3
+

£|> 8¢ — )

1o >0

Using compiex convolution, we have:

= 1 TF(p)
£ ﬂ\.QvaQ - aﬂv ﬂﬂ& ﬁ\”ﬂ«.ﬂﬂ_&ﬁ

If C =0+ j#, —« < f§ < oo, then ¢ must be such that o > o, Re(s) — o
for Re(s) > Q.

Given
Sty =3 u(t)
and f *(¢) is found by sampling £ (¢) every 0.01 s and approximating it b

> n n
() 0. — -
/o Mm, 9171700, 1* ~ oo
find F*(s).
Solution
3
- —4
F(s) T >
= n 1
£ Mm ' ol =T, o0
and F*(s) = F(s)* O.O..Hoo:
1 — e
1 0.03 i
T m\. p+ 4l — 00N dp

where C = ¢ + j#is such that ¢ > —4 and Re(s) — o > 0 or o < Re(s) “M.....

any Re(s) > 0. The path Cis always to the right of Re(p) - —4 and to

left of the poles due to | — "¢, We should make a pole zero sketd

similar to that of Figure 5-5(b).
Finding F*(s) by closing C to the left, we obtain:

I

F*(s) = [residue of the pole at p = —4]
0.03

| _ ¢-00is,—004

5-4 LINEAR SYSTEMS WITH RANDOM AND SIGNAL PLUS NOISE INPUTS 209

The form of F*(s) is somewhat unwieldy and from introductory complex
yariables we can see that F*(s) contains an infinite number of poles, all with the
same real part. {Can you find them?) However, an important continuation of this
problem is considered in Chapter 6 when the Z transform is found for the discrete
function obtained by sampling £ (¢) every r seconds.

5-4 LINEAR SYSTEMS WITH RANDOM AND
SIGNAL PLUS NOISE INPUTS

In Chapter 3 we found the output autocorrelation function and cross-correlation
function of the input with the output when the input to a LTIC continuous system
is & noise waveform with autocorrelation function R, (7):

R, (1) = Cu()*R, (1) (5-13)
and R, (7) = R,(+) @ k(1) (5-14a)
or R (1) = h{(r}*R (1) {5-14b)

These results are shown schematically in Figure 5-6(a). Let us denote £ [R,.(7)]
by S.1(5), LIR (1) by S,y (), LRy ()] by 8,(s), LR, (r)] by ,,(s), and
L{Cy ()] by T(s). We call S, (s) the power spectral density of x(¢), S,,(s) the
cross-spectrat density of x(¢) and y(z), Syx(s) the crass-spectral density of y(r)
and x{1), and Sy, (s) the power spectral density of y(¢) and 7(s) the power
transfer function. Technically, these names are more meaningful to physical
mterpretation when the Fourier transforms of R, (1), R, (7), R, (7}, and Cp, ()
are used.

We now find expressions for these spectral quantities using the convolution
and correlation theorems:

,M.w_.-.Ahu = an:n:u ® &Au:.w.kkmhv

= [H()H(-5)]S.(s) (5-15)
Where T(s) = HESH(—35)
So8) = LR () @ h(s)]
= H(5)S(—3) (5-16)
or Sy (s) = L[A(r)*R(7)]
= H($)S. () (5-17)

These results are tabuiated in Figure 5-6b. It can be shown that since R, (+) is
fven, S, (s) and S.x(—5) are equivalent. Before applying these formulas, we
qoco_ov some symmetry properties for spectral functions.



210 5/THE TWO-SIDED LAPLAGE TRANSFORY

Given a random

signal x{¢) with and a L. T.LC.S
autocorrelation R, (¢) with find
- k(L) -
x(t) and R, (7) R, (T)
Cpn(T) known and Ry {7}
(a) Time-Domain Results
xﬁwmﬂv = ﬁ,\.}}ﬁﬂv*»ﬂ?«Aﬂv
mmk.qﬁ.._.u = zkkﬁ.ﬂv @ Mumﬂv
= h(7)*Rou(7)
Ry (1) = h(1) @ R (7)

(b) Transform Results

Lih(0) = H{s),  E[Cu(D)] = H(s)H(—s) = T(s),
S, (8) = S (s) T(s)
S, (8) = H(5)S,.(s) H(s5)S(—5)

»M.uﬁA,wv = mﬁfhu-m.nhﬁhu = rw.kw_ﬁ|,ww

Figure 5-6 (a) The time-domain results for a system with a random input; (b)
transform results.

h\—xhn mﬂvﬁ = .M.ku.

or

5-4-1 Properties of Spectral Functions

For §..(5)
It is easy to show S (s) = S, (—5). By definition:

Suls) = [ " Ru(re T dr

Letr=—p
therefore S..(s) = .\.ls Ro(—p)e—? —dp
- [ Ratp)e” dp,
since R (p) = R..(-p)
and Seu(8) = Sie(—5) (5-18

This implies that if S, (s) contains a pole at s = s,,, it must also contain a pole &
§ = —s,, and simitarly, if S, (s) contains a zero at 5 — s,, it must also contain 1
zeroat s = —5,. 1

This is also clear from the time domain. If an even function contain
e™u(t), then it must also contain e ™u(—1). The same is also true for m.t__\,ﬂ_

where C, (1) = (7} @ k(7).
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LIA(r) @ h()] = H(s)H(~5)
= T(s)
T(s) = T(—s) (5-19)

) Since S, (s) and T(s) contain product terms such as {5 = 5)(s + 5,) =
(s* = s7) in the denominator and (s — s5,)(s + 5.) = (s* — 52) in the numerator,
then both the numerator and denominator will be real even polynomizls in s.

buS™ + by 18 4 L4 By,

m = 5-20
@S + @, 15 4 . 4 g (5-20)

,W‘Nﬁﬁhv or N..Ahv =

For §,.(s)
Since R, () = R,.(—7), it is easy to show that 84 (5) = §,,(—s). By definition:

Su(s) = [“Ry(ne ™ dr

letp=—r1
therefore S, (5) = ,\als R, (—p)e® —dp
= r\l;n.s MNk‘zAIr..va.ﬂ_ h—»ﬁ
= l\u;“ mﬂ‘_.«ﬁﬁvmmb _Qh—
= rm«v..«ﬁ|.m.v
and S, (5} = H(-5)8.(9) (5-21)

This implies that if S,y (s) has a pole at s, or a zero at s,, then 8, (s) has a pole at
—-§,0r a zero at — s, and vice versa.
Summarizing the main properties of spectral functions, we have:

Property 1
.m..kk ﬁ.wv = ,W.hhﬁ|hv
or T(s)=T(-5)
where T(s) = L[Cp(n)]

This implies a spectral function is the ratio of two even polynomials of s.

Property 2

,M..n.em.wv = ..W».xﬁ.[.wu .
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EXAMPLE 5-13
Given the impulse response of a system is:

() = Be™" + 2te™ " )u(t)

Use the rmu_m_nm transforni to find the power transfer function 7'(s), ang

hence C,, (7).
Solution
h(1) = (3™ + 2te” ) u(1)
Eauiw. i +@m£~
387 4 145 + 14
s+ D(s+ 2
S35+ 3.)(s + 1.5)
(s + D(s + 2)?
LAt ® h(2)] = T(s)

s+ 3.)6 + 1.5)  3(—s + 3D(—s + 1.5)
T DG+ (54 D(—st 27
9(+1)(s + 3.1)(s — 3.1)s + 1.5)(s — 1.5)
(— (s + (s — D(=D*[(s + 2)(s — )]
—9(s + 3.1)(s = 3.1)(s + 1.5)s — 1.5)

G+ Dis — D + 2)s — 2))

-l <ol

As the ratio of two even polynomials this becomes:
—9(s* — 9.6)(s* — 2.25)

(& — (s — 4)*
—9[s* — 11.85s% + 21.6]

- Co—1 1
_ 95 + 245 — 16 o=

_Esuoafo.eamn_m.ug
me (s — D(s + (s — 2)(s +

T(s) =

and Cin(1) = %) e ds

Forr>0
C,s(7) = (residue of pole at —1) + (residue of pole at —2)
~9(—8.6)(~1.25) _,
(—2(-3’(1y -
4 2
+ m.. —9{s° — 11.85s" + Nu.mw o
ds| (s — 1){s + 1){s — 2) -3
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~9(16 — 47.4 + 216) .
28 Te

Ly d[—9(" — 11855 + 2L6)
ds|s* — 45 + 357 + 45 — 4||,-z

=54e" + 1. 8re " +433e7Y

=54e" +

+ e

Using the evenness of Gy, (7), we get:
Cop(r) = S.de™ " + 1.8 |7] e + 4.33¢72

5-4-2 Deterministic Signal Plus Uncorrelated
Zero-Mean Noise

Figure 5-7(a) shows a linear system with system function H(s) and power
transfer function T{s) = H{s) H{—s). The input is x(¢) = f(¢) + n(z), where f(1)
is a deterministic signal and (¢} is zero-mean uncorrelated noise (i.e., R, (1) =
0) with autocorrelation function R, (7). In Chapter 3 we found the deterministic
output as:

g(1) = f()*h(1)
and the output noise autocorrelation function as:
Rpm (7} = Ry (7)* Cia(7)
and the cross-correlation of n(¢) with m(#) as:
Run(7) = B(7)* R (7)

Using the bilateral Laplace transform, we obtain:

G(s) = F(s)H(s) (5-22)
Som(8) = S (S)[H(s) H(-5)] (5-23)
S (5) = H(5)Sm{s) (5-24)
Syn(8) = H{—5)Sm(5) (5-25)

These relations are summarized in Figure 5-7(b). We conclude this section by

resolving Example 3-17 from Chapter 3 by using the bilaterat Laplace trans-
form.

EXAMPLE 5-14
Consider a linear system with impulse response k{¢) — 2e *u(t) and with a
deterministic input /() = 3 Cos 2¢ plus uncorrelated white noise with a
mean square value of 100 whose autocorrelation function may be approxi-
mated by R,.(7) — 48(7). Find the output signal, the output power spectral
density S,,,(s), and hence the ocutput autocorrelation function and the
input and output signal to noise ratios.
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Given g signal £ (1) plus and a L.T.I.C. system } find the output signal g(¢),

uncorrelated zero mean noise | with Spmt5) and S, (5)
> #{1), Cyp () and 3
fiH+an T(s) = H{s)H(—5) g +min

known

{a) Time-Domain Results (Chapter 3)
gt} = £ ()R (D)
Rum(7) = R (1)#Ci (7}

R (7) = h(7)*+R,,(7)
{b) Transform Results
G(s) = H(s)F(s)
S (8) = S5 () T(5)
Son(s) = H(5)5,u(5)

»M.Eaﬁhv = tﬁihv@«gmhv

Figure 5-7 (a) The time-domain results for a system with a signal plus uncorrelat
neise input; {b) the transform results.

Solution

The Output Signal

As in Example 3-17, using phasors, we get:
2

Jj2+3

1.66 Cos (2t — 339)

Re 3200 o/

8(1)

The Output Power Spectral Density
Sw(s) = [45(r)] = 4
H(s) = L [2e7¥u(1)]

2

s+ 3

and the power transfer function is:
T)=H@EH(—s)
2 2
s+ 3 -54+3
—4
= ﬂw —3<cog<i

SUMMARY 215

1 fesge —4
Cn() = 5= .\q,i_w g e ds

Forv=10
Cu(7) = [residue of the pole at 5 = 3]
— H|M e~ ulr)
therefore Cou (1) = 0.67e Y u(r) + 0.67¢"u(—7)
»m.a_a_ﬁhv = H;Ahu»m.aamhv
-16
ﬂw..w|.l|©. —3<cao<3
and R (1) = 2677
As before, we can find:
m 2
V2
S| W2 e
2 m_n_!.; HOD
1.6642
and 2 -
s = h: =0.53

Nlowpue Ry (0)

This problem was just as easy in the time domain since the assumption of white
noise made the calculation:

MN._._EA....U = ﬁ.}bﬁﬂvﬂxaaﬂ.ﬂv

trivial, If R_,(7) is not so simple, the transform approach is easier, and in more
difficult cases finding R, (7} as the inverse of §,,,,(s) is available as a computer
program,

SUMMARY

The two-sided Laplace transform was defined as F(s) = .\Hwhcmua dt, and if it
exists it does so for a region of convergence o, < Re(s) < a,. The behavior of £(¢)
for positive time places the lower bound o, on Re(s) and the behavior of f(¢) for
negative time places the upper bound of ¢, on Re(s). The experience of
evaluating one-sided transforms may be utilized to find two-sided transforms. 1f
J() = fi(Du(t) + f2(u(—1t) and F(s) exists, then F{s) = F,{(s) + F,(s) where
F,(s) is the one-sided transform of /;(—fu () withs — —s.

The most commonly occurring two-sided functions in linear system theory
are correlation functions, whether C,,(r), the correlation of the impulse response




216 5/THE TWO-SIDED LAPLACE TRANSFORM

PROBLEMS 217
of a system with itself, or the autocorrelation and cross-correlation functions cm..m ) 2(4) + 10, df2s? 4+ 10
ergodic noise waveforms. When studying the main properties of two-sided: 18 1@ - 9 e uly) - ds| s+2 € el “(=0

transforms the reader should pay particular attention to the transform of ]

-2 !
correlation integrals: 2e7u(t) — 4te'u(-1)

L [x() @ y(#)] = Y(s)X(~s)
and Lx(8) @ x()] = X()X(-5)

The time-domain results for a linear system with an ergodic random m:vcm
whose autocorrelation function is R, (7) are: .

W.E.A._.v = .mﬂu.k ﬁﬂvuﬁ‘_{. T_.u
and hkvﬁ....u = .«nmﬂvﬂbﬂﬁ%ﬂu

PROBLEMS

5-1. Find the two-sided Laplace transform and state the region of convergence for the
following functions:
(@ £i{1) = (2 + 3nu() - 3eu(-1) b} f2(8) = (2 + 3t — 3Yu(n)
(€} f3(1} = (2 + 3¢ — 3e'hu(—1) @} fi() =" eu(—1)
{e) fi(#) = 6.2 Cos{4r — 40°)u(—1) (f) fo(e) = 22°37
S @ O = D+ 1) = ult + 1)]

In the transform domain these results are:

5-2. (a)} Given:
S, (5) = S,() T(s) S = te ™ u(t) — déu(-1)
where T(s) = H(s) H(—5) and gty =/t - 4)
and S, (5) = H{s) S, (5) Use the shifting theorem to find G(s). How does the pole zero configuration and
xy | X

region of convergence of G (s) compare to those of F(s)?
(b} Plot the following functions and find their two-sided Laplace transforms:
i) e " Vu(1-3) (i) 20 + e u(—r — 4
{iii) 3eMu(-1 + 3)

5-3. As quickly as possible find the inverse transforms of:

where S,,(s) and S, (s}, the transforms of the autocorrelation functions, a
called the power spectral densities. Using inverse transforms, we find that t
correlation functions are:

s

hﬂ.&. mﬂv =L ! _”.Whh A.w.v nﬁmhv.._

. 2 2 d
and | Ry(1) = L[S ()H(s)] _ Wit o2 Moy o<
Inverse transforms were evaluated in two ways. Any transform F(s)y 25 4+ 3
N(s)/D(s) where the order of D(s) is at least one higher than N(s) may b {c) s+454 3" o< -3

expanded in partial fractions and f(z) is then found by table reference. FoK
example, if F(s} = 2/(s + 2) + 4/(s — 1), —2 < 6 < 1, then f(¢) = 2¢e~%u(/¥
— 41e'u(—1). Alternatively, the inverse may be found by the residue theor

5-4. Evaluate the following inverse Laplace transforms using partial fractions and table

reference. Plot the time function in each case:

hm

From the definition of the inverse we have: (a) F,(s) = \ —05<g<3
(25 + 1)}{s — 3)®
.— T+ fm
SO = 5= [ F(s)e"ds . e \
2nj n.,\q4n._s (b) Fuls) = G D63 -05<e=]
By judiciously closing C to the left or right, we obtain: 35 4 2
{c) Fy(s) = g o< -3
Whent> 0 5
25t — |
S(t) = Z[sum of the residues of the poles of F(s)e” to the left of o} (d) F,(s5) = e Muq 3 where £, (¢) is causal.

Whent < 0 3-5. Repeat Problem 5-3 using the residue theory.

5-6. It possible, evaluate the following convolution and correlation integrals:

J(#) = —Z[sum of the residues of the poles of F(s)e" to the right of ¢], {(a) 3(r — a)*s(r — b) M) 61 —a) D51 - b)
. . () 8(t — B) D (1 — a) (d) Ze M u(e)*2e " u(s)
For example, the _36_..,“0 transform of: (€) 2e~u(t) ® 2e "u(s) () 2~ u(s)*2e "u(—1)
25°+ 10 (8 2¢u(t) @ 2eu(—~1) -+ (h) Ze Mx3e 20
F(s) = (s + (s — _VN' —2<o <l (i) 2e 1@ 320 (i) 3e M@ 21
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57,

5-8.

v

5-10.

5-11.

5-12. Given the input to a system with system function M (s} = 2/(s + 5) is essentia

5-9.

5/THE TWO-SIDED LAPLACE TRANSFQ

(a) 1T x{z} — X(5), Oy <0 < Ty
and y(#) — Y(s5), 0,1 <0 <0,
will the Laplace transform of x (1) y{¢) always exist?
by If x{#) — X(5), —S<eo<3
and y(1) ~ Y(s5), —l<o=<b
and both denominator polynomials are of second order:
{1} for what range of Re(s) does x(¢) y(¢) exist
{2) sketch the poles of X{p) Y(s — p) and the contour of integration for

T Y m o+ foo
Xy =5 7X@ —p)dp
C

(a) Use the complex convolution to find the Laplace transform of x{#) y(¢)
x(2) = 2te*u(—1) + e *u()

ye) = dul(—1t) + tu(y)

{b) Check your answer by finding the transform directly.

where

and

Given:

x(f) = X(s),

y() = Y(s),

{a) What are the conditions for x () and y(t) to be stable?

{b) List when the following are stable for x(z} and y (¢} stable, and if they can,
unstable give a specific example for x{#) and y{¢):
(D) x(Dp (2 x@*p() 3) x(0) © x(2)
(@) x() @y () ¥y D x(n)

{c) Sketch pole diagrams.

(@} Find the output of a system with the system function:

H{s)=3/(s + 2),

O <0 < Gy

and Gy < 0 < Oy

o= —2
when the input is:
x(1) = 2u(—0) + te”'u(D)

{b) Plot y(). . ...
{a) Prove that the mean square value of a random process with power spectn
density §,,(s) is:

L[ Sl ds

k4
i J—
gy A v Mq_.Lm - =

o) < T <Oy

¥[residues of the poles of S,,(s) to the left of ¢]

or — X [residues of the poles of S, {s) to the right of 4]

{b) For the continuous process:

-5+ 9
Sl =51 a

find the mean square value of x(7) using residue theory.
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white noise with S, (s} = 4 and RMS = 50. Find;

(a) the output power spectral density and cross-power spectral density between the
input and output.

(b) the cutput noise fluctuations y?(t} using:

_ .
2 T+ o
o = R,(0) Mq_.lu .\Q.J.M S,,(s) ds

<
Z[residues of the poles to the left of 4]

—Z[residues of the poles to the right of «].

5-13. If the input to the system of Problem 5-12 consists of the deterministic signal /(1) =
20 Cos (50¢ — 30°) plus the same white noise with S,,(s) = 4 and #°(7) ~ 50, find
the input and output signal to noise ratios.

5-14 The power transfer function is defined as:
T(s) = H(SH(—35)

(a) Find the power transfer function for the following systems and plot the pole zero

diagram:
(1) 20 (2) LF
" VWA ' + ry ik +
(1 1y vin x(n :
v 3 v Vv 20 %:
()] 20 12 {4 29 1a
+
¥ * .T:;
ﬂm: 1F- 2F ﬁ: a«: IF  2F

(b) If the input 1o each of the four systems of part (a) is .mmm:_dnn white noise with
S.05) = 2 and xms =_100 use residue theory to find the mean squared
fluctuations at the output y*(r) = R, (0).

5-15. (a) If the input to system (1) of part (a) of the Problem 5-14 is random noise with
R (7) = 50e~*", find the power spectral density of the output noise S,,(s) and the
cross-spectral density of the input and output noise S,y (s).

(b) give a pole zero plot for S.p(5), 8,.(5). and S, (5).
(¢) Find the signal to noise ratio at the input and output if an input signal f{f) = 2is
added to the input noise.

516, A power spectral density S, (s) or power transfer function may be written as:

Sul5) = G()G(—3) or T(s)— H($)H{—s)

s._._m_.n. G(s) or H{s) have their poles and 7eros in the left half plane. Design a
shaping filter™ H{s) that transforms white noise with 8..(5) = 2 to noise with a

power spectral density §,,(s) = (—57 + 1)/(s* + 81).
5-17. In the statistical communication theory, a system is often designed assuming input
white noise and a prefilter is then used to transform the actual power spectral



220 _ 5/THE TWO-SIDED LAPLACE TRANSFOR

density S,,(s) to white noise. This is the reverse of Problem 5-i6. Find H(s) td

convert S, (5) = (—s* + 1)/(s* + 81) to white noise S,,(s) = 1.
5-18. Which of the following functions qualify as power spectral densities?

@ <5 ) =

© 5 d) ﬁp
© e O %.Mﬂ

@ ﬁlmnwo% L hf_mwﬁm. 16

Chapter 6

The One-sided Z Transform

INTRODUCTION

In Chapter 2 the time-domain analysis of LTIC discrete systems was treated.
Linear difference equations of the type:

Gy (W) + -+ o ¥ ayy(n ~ p) = f(n)

were solved classically and iteratively, It was seen that the homogeneous solution

contained terms of the form A,o” or (A, + An)a”, and so on. Similarly, when
f(n) was of the form (4, + A,n + A,n*)a” the forced response was readily found
by logically assuming a solution and using substitution, A general LTIC discrete
System is characterized by a difference equation:

ay(m) +a,_y(n— 1)+ - - +a, y(n—p)
=bx(n) + - -+ + b, x(n - 1)

where x(n) and y(n) denote the input and output, respectively. The pulse
respense f(n) was defined as the output when the input x(n} = é(n) and pulse
responses were solved for classically, by assu ming a homogeneous type solution.
If the input to0 a LTIC discrete system is x(n) = 3, x(k)s(n — k) then the
zero-state output y(n} was found as the convolution of the input and pulse
response:

y(n) = x(n) * h(n)

Y x(p)a(n — p) or M R(Dx(n — 1)

7

In Chapter 6 we consider the Z transform analysis of LTIC systems with




