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energy speciral density to the output energy spectral density. Because of the
magnitude-squared nature of these terms, the output and the input energy
spectral densities are both independent of any phase variations that might be
present.

Another use for Parseval's theorem is in what is called energy _cns__uﬁ.c?
Assume for some given f (¢) that the left-hand side of Equation §- 51 can be i
computed. This yields the total energy contained in the signal. Now on the }
right-hand side of Equation 8-51, note first that |F|? is an even function of w.
Thus we can write:

@ 1 f.
[orwd-— [*IF (o)) dw (53)

Often the energy spectrum |F{* will be concentrated over a finite band of
frequencies. A typical question in this area is to determine such a frequency band :;

within which a certain percentage of the total energy will be localized.

EXAMPLE 8-26

Determine a frequency band (0, w,) over which one half the energy in
S (&) = e7'u(t) will be localized,

Solution. The energy in £ (1) is:
= {5fHdt= | “e?dt=05
6- [ rwdi- [“e

Now, from Equation 8-53, we can write:

1 1 o,
505 =~ [“|F|*de

equating one half the energy to the integral with finite upper limit, We

know :E.ﬁ
F(jo) = —
I T e
Thus 1F|? L

1+«

1 po, 1 1 1 e
and ONMHM«\. ﬂheﬂmmﬂ.ﬂﬁ E_cw
or 0.25% = Tan™' w, — Tan™'0 = Tan™' w,
therefore w, = Tan {w/4) = 1 rad/s

The discussion on Parseval’s theorem provides a transition between the
properties and the applications of the Fourier transform. The result postulated in
Parseval's theorem employs the idea of signal energy and follows directly from

g-5 THE FOURIER TRANSFORM AND THE LAPLACE TRANSFORM: A COMPARISON 323

the definitions of the Fourier transform and the invgrse Fourier transform. Using
Parseval’s theorem in the energy localization problem introduces Fourier trans-
form applications. Applications of the Fouriér ﬁm&:&o_.a span a wide variety of
disciplines. Some of these applications will be dealt with in Section 8.6.

At this point, we pause in order to consoliglate our results. We studied the
Fourier series and from it developed the Fdurier transform. A number of
properties of the Fourier transform were considered, not only as an aid to obtain
Fourier transform functions, but also as a means to gain deeper insights into the
essence of the Fourier transform. Even further appreciation can be obtained by
comparing the Fourier transform to the Laplace transform, which has already
been discussed in Chapters 4 and 5. A basic understanding of the Laplace
transform is presupposed. The next short section deals with the relationship
between the Fourier and Laplace transforms.

8-5 THE FOURIER TRANSFORM AND THE
LAPLACE TRANSFORM: A COMPARISON

From a cursory glance at the two transforms we might conclude that F( jw) is
just F(s) with s replaced by jw. This, however, is not always the case. It is so if

f{) =0,t<0,and .hs | £(2)| dt < =; that is, if /() is absolutely integrable.

EXAMPLE 8-27
Determine F( jw) from F(s) for:

@) fi(6) = e u(n)
(b) f3(1} = e7* Cos 10tu(r)
(©) (1) = u(t) — u(t —10)
Solution
]
(a) Fi(s) = —

Since f,(1) is zero for 1 < 0 and f, (¢} is absolutely integrable:

Fjw)= ———o
1 Jo) 10 1 jo
s+ 1 ) Jar + 1
b F{is)=——m8 . F -
® v e TR A G R T
Pl 11 _
(c) Fis) =~ — —e"1% . Fi(jw) = — — — e '%
55 jo  ja
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e (73 (w) + —
Jw

u(t — 10) — e " F( jw)
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Jw
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o 10

m{w) +
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Therefore Fy( jwy = [7d{w) + —
Jw
~ 10w
— {md(w) + &
Jew

1 1

= —-T.f

Jo o Jw

— 10w

which checks with the preceding result.

Under the two constraints of £ () = 0, 7 < 0, and £ () being absolutely;
integrable, we can do the reverse and get F(s) from F( jw) by letting F(s) -
F( jw}|yeyy;- If we employ the two-sided Laplace transform, we can relax th
constraint that f(¥) be a causal signal; that is f(¢) = 0, ¢t < 0. The interestin
cases, however, are those in which simple substitution dees not work. This-occurs
when absolute integrability does not hold. To handle these cases, assume £ (f) i
causal so we need only consider the one-sided Laplace transform. If this is th
case, then the Laplace transform is more inclusive than the Fourier transform; i
exists for a wider class of functions. To put it differently, the existence of F( juw
implies the existence of F(s), but the existence of F(s) does not necessarily imply:
the existence of F( jw). Let us examine the issue of absolute integrability by?
distinguishing the various possible regions of convergence of a given Laplace
transform function. These regions can be considered in terms of the s plane pole]
locations of F(s). ;

Region of Convergence | If F(s} has all poles in the LHP {Left Hand'
Plane), then f (£} is absolutely integrable

and F(jw) = F($)|s = jw
and F(s) = F(jw)|lw = s/j

(8-54) |
(8-55) |

i

Region of Convergence Il If F(s) has any nonrepeated poles on the jo axis
(with possibly other poles in the LHP), then f(¥) is not absolutely integrable but
it is a power signal. The Fourier transform of these signals contains impulses in

o-a |1 FUURIEA TRAANOPFURKN ARLD ITAC LAFLAWL FRANOFJFAFL. A LAV ARDPAAIN o .
¥
-
"

the frequency domain. We can then write:

F(jo) = F($)oupo + 7 2_kidlw — @), * (8-56)

The k, terms are the residues at the poles on the jw axis: s = jw;. The reverse is

casier. Given F{jw), simply let w — s/ and zero out all impulses 8w — ) in

order to get F(s) from F(jw). The case of repeated pgles on the jw axis is more

difficult because F(jw) contains 6, 5, and so on, terms. To get F(jw) in these

cases, we obtain f(t) from F(s), then work with f(¢) instead of F{(s). To get F(s)
from F(jw) is also easy: Simply let w = 5/j and zero out all §, 4, 4, and so on,

terms.

Region of Convergence Hl 1f F(s) has any poles in the RHP (Right Hand

-Plane), then F(jw) does not exist.

EXAMPLE 8-28
(&) Given F(s) = 10/s(s + 10), determine F{(jw).
(b) Given F(jw) = 10fa(l — ®)(10j — w} + wb(w) - S5x/101
(10 + jYo(w + 1) — 5x/101 (10 — j)é(w — 1), determine F(s).
(¢) Given F(s) = 10/5*(s + 1), determine F(jw).

Solution
(a) Write:
1 B 10
T s+ 10 s(s+ 10)

o2, B 1
=5+ 10

therefore from Equation 8-56:

. 10
FUo) = e 1 10) T ™0
(b) To obtain F(s), zero out the 6{w}), 8(w + 1), and 8(w — 1) terms, then
let w = 5/}
10 10
Thus — F() = T GD10] = 577~ (10s + sH(1 + )
10
F(s) =

s(s + 10)(s* + 1)

(¢) Since F(s) has repeated poles on the jw axis, we get f) C.u first, because
Equation 8-56 is not directly applicable in this case. Write
A B C 10 10 10

F(s)=Z+5 + o —
() @+h~+h+_ s+1 s s

f(1) = 10e~u(?) + 10tu(t) — 10u(?)
We saw that ru(f) < jré(w) — 1/w? from Example 8-22(¢).
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Thus FT{f(0)} = F(jw)

10 o 10
he w1 + 10jré(w) — — — 10d(w) IL__|€

These considerations cover most of the possible relations between the:
Fourier transform and the Laplace transform. The fundamental idea here is:

LT{f(n} = FTle " f(Du()}

which is true as long as the Laplace transform of f(¢) exists. Working with
terms instead of jw terms usually results in simpler algebraic manipulations. I
addition, the Laplace transform readily applies to systems with initial condition:
whereas the Fourier transform does not. Although as a rule of thumb workisii
with F(s) is preferred, facility in switching from F(s) to F(jw) is essentis
especially in the case where frequency response or spectral analysis is at _mm_-
We stress the importance of Equation 8-56. A final examptle follows.

EXAMPLE 8-29
I A(6) = €' u(r), we know that F(s) = 1/(s — 10) is the Laplace transfo
that exists as long as Re(s) = o > 10. To what might F( jw) correspond?

Solution. As we saw previously, if F(s) has RHP poles, F( jw) does
exist. Thus the given f(f) does not have a Fourier transform. However, -
g(t) = —e' u(—1), then G{ jw) = 1/( jw — 10) is the Fourier transfo
of g(t). Nate also that G( jw) = F(s)|,.,, = F(jw). So F( jw) is not
Fourter transform of the causal time function f(¢), but rather, the Fourie
transform of the noncausal time function g(f).

Drill Set: Fourier Transforms

1. Use the duality property to determine the Fourier transform o
(Sin 1/0)% _

2. Use the frequency differentiation property to determine the Fourief;
transform of * e u(r).

3. Determine the Fourier transform of the periodic signal

1, 0 < ¢ < 1 which has a period T = 3
F(t) =12, l<t<2
0, 2<t<3

4. Prove that the Fourier transform of the correlation of the x(¢) with itself
is equal to the magnitude of the Fourier transform squared.

5. If F(jw) takes the following forms, determine the corresponding f(¥):
(a) (o + 1)/(e + 2)(jw + 3)
(b) (1 —«w® + jo)/(Gw + 2)(2 — 0® + jw)
() (o + 5)/(jo + 10)(jw + 20)°
(d) jo/(o + D)(jo + 2)(je + 3}
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8-6 APPLICATIONS OF FOURIER THEORY

The Fourier transform and its digital counterpart, the discrete Fourier trans-
form, which will be studied in Chapter 9, are widely n\:v_owna in control systems,
communication systems, and signal processing. Many of the signals considered,
in particular, in the signal processing area, are in the form of data collected from
radar tracks or measurements from various kinds of electromechanical devices.
These signals invariably are noisy. Fourier analysis is used with these signals in
an attempt to reveal their spectral content. This processing typically employs
numerical techniques and the discrete Fourier transform. In addition to process-
ing signals, Fourier analysis is used considerably in the control systems and the
communication systems areas. Multiplexing and modulation of communication
systems rely heavily on Fourier theory. The design of filters that are employed in
control and communication systems is another field in which the Fourier theory
is indispensable. Filters can be classified as either analog or digital. Digital filters
usually employ the Z transform and analog filters the Fourier transform. As a
first example of the application of Fourier theory we briefly consider analog
filters.

8-6-1 Filters

One of the most basic applications of the Fourier transform employs the
convolution property. Since the Fourier transform of f()*g(?) is F(jw)G(jw),
we have an alternative to performing the convolution operation. If f(£} = h(¢),
the impulse response, then F(jw) = H{jw), the system function or filter transfer
function, .

Let g(¢) be the system input x(¢) and f*g = h*x = y(#), the system output.
Then Y(jw) = H(jw)X{(jw). To get the output y(¢), we need only take the
inverse Fourier transform of Y (jw). This is another version of the basic
input—output relation of the linear systems theory and is useful in comparing real
and ideal filters. Consider an ideal low-pass (LP) filter with transfer function
H{jw) as follows:

H{jw) =1, -y = W =< wy,

=0, otherwise _ (8-58)

H(jw) is plotted in Figure 8-20,

Hjw)

—lal, (1) [

Figure 8-20 Ldeal low-pass filter transfer function.
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From entry number 9 in Table 8-1, the inverse Fourier transform of this |
H{jw)is k(D)
Sinwgt  w, (2 1
where () =2 _Sinc| "y (8-59) 3
i T T ;

This impulse reponse is noncausal. Noncausal systems are not v:wwmom:w._._.m.
realizable; that is, they cannot be built. This is why we say H(jw) represents ail §
ideal filter. Although not realizable, we can use & {(jw) as a standard against w_

which real filters can be compared.

Often the step response instead of the impulse response is used in filter§

comparisons. We know that y(f) = x(2)*h(#). If the input x(¢) is the unit step
“u(1), then we can call the output y(r), the unit step response w(f). We have:

RS
E

w(t) = u(f)*=h(1)
- \.sizac — N dr
- [ h) ax (8-60
and for the ideal low-pass filter
 Sin woh _
wit) = ‘\H ' (8-61

which is an integral of a Sinc function. In these cases h(f) and w(f) appear as
Figure 8-21. The ripple and overshoot in w(f) on either side of the ste]
discontinuity at ¢ — 0 are known as the Gibbs phenomenon, named for Josialg
Gibbs, a mathematical physicist who studied finite Fourier series approximatiot
theory around 1900.

Now the occurrence for ¢ < 0 of the Gibbs phenomenon in w(¢) is anothe
indication of the noncausal nature of the ideal low-pass filter. The unit step inp
is applied at ¢ = 0 but the output w(r) has nonzero values for ¢ < 0, The noncausa
ideal low-pass filter is not physically realizable. To improve the filter somewha
imagine w(t) to be time shifted to the right by ¢, units. We get a plot of w(s — ¢,
which appears in Figure 8-22. This corresponds to a phase shift in H(jw) to
obtain:

H{jw)

Le =", —Wy = W= Wy

0 otherwise

i) w, fr

X
w,
— B e

A B

°E|=|

Figure 8-21 Plots of A(r} and w{?) for the ideal LP filter.
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Figure 8-22  Plot of w(t — 1,) for the ideal LP filter.

We can compare these ideal filter characteristics to those of a real low-pass
filter, for example, the RC circuit presented in Figure 8-23, We can write:

1 _ 1 H‘Fmdﬂs Lo fany
14+ jwRC 1+ j(w/uwg) /\_ + @y
where w, = 1/RC is the 3 db or half power or cutoff frequency. w, is the

bandwidth of the low-pass filter.
This filter has the step response:

w(t) = (1 — e u(s) (8-64)

The step response is plotted in Figure 8-24. .
The ideal low-pass (LP) filter has a phase 8 («) = wt,. From this relation we
can define the time delay as _,o:oim“

Hpc(jw) = (8-63)

46
by = ~de (W) lymo (8-65)

Now the phase of the real LP filter is 8(w) = —Tan™' w/w,. Applying the time
delay definition to the real filter, we get:

a8 d w 1 1 :
- —(@=——Tan"' —| = —————5— (8-66)
o dw (w) dol 2" wof 1+ (w/wg)? wp
which when evaluated at w = 0 becomes:
1
ty=— (8-67)
W

Note that the product of the time delay and the filter bandwidth is constant: fow,
= 1. This reciprocal relationship is important in Fourier transform theory and
follows from the time-scaling property of the Fourier transform. If we desire a

Figure 8-23 RC circuit as low-pass filter.
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¢

Wy Figure 8-24  Step response of RC circuit.

fast response, for instance, a very small value for the ¢, indicated in Figure 8-24,
then we must have a very large value for the bandwidth. Consider the rise time, ¢,.
Although there are a number of different ways to define ¢,, we define it as the
time from 10 to 90% of the final value.

Thus Ol=1—¢™" and 09=1_— ¢ "
and L=t — |
e =109
e = (.]
e olt=h) _ el w
wpt,=1n9 =22

Again the reciprocal relationship appears. If we want a very short rise time, fof
instance, we must have a filter with a very wide bandwidth.

If we consider the real and ideal LP filter representations in the context @
the Paley-Wiener criterion, some interesting results foltow. Although the proof @
this criterion is beyond our scope, the employment of it is fairly straightforwa
and it can serve as a useful test for causality. The Paley-Wiener criterion can’
applied to any Fourier transform to indicate whether or not it corresponds to
causal time function. Let H(jw) = A(w) 6(w) be the transfer function for
given filter. Then for H(jw) <> h(1), if (r) is causal, the following inequalit
must hold:

/- E%As (8-68
= 1 + @t

This n_.:m:o: is obviously not satisfied by the ideal LP filter since 4 (w) = 0 fo
|®| > wy and the natural log of zero is infinity. For the RC LP filter, mb:»:o
8.68 is satisfied since 4 (w)} — 0 and In A{w) — = only as w > tow.

The simple RC LP filter of Figure 8-23 can be improved by considering:
more complex circuitry. To improve the filter means to get it closer to the
characteristics of the ideal filter. In Figure 8-25 we plot the frequency response
magnitude curves for H and Hp for positive frequencies. For the ideal LP filter,
the spectrum from 0 = w =< w, is called the pass-band and from wy = w <= I8

- called the stop-band. For the real LP filter there is a region around w, called the.
transition-band which can specify the attenuation desired by a certain frequency
beyond w;. More complex circuitry could result in a LP filter that more nearly
approximates the curve for {H|. These circuits typically employ operational

8-6 APPLICATIONS OF FOURIER THEORY 331

|H (jeo}]
1.0 -
e .
L u.ffl\ ___m.hn_:ruu_

......_l..l

Wi [

Figure 8-25 Real and ideal LP magnitude frequency response.

amplifiers and various passive circuit elements, usually resistors and capacitors.
In practice, inductors are seldom used because of their size and weight.
it
EXAMPLE 8-30
The circuit shown in Figure 8-26 represents an LP filter that is an
improvement over the filter of Figure 8-23. It has a sharper frequency
response magnitude curve. Let R = 1 Q and determine C such that the filter
has a half power point at 1 kHz.

Solution. At the node labeled ¥ we can write the node equations:

VoV V. VoV V-V Y
R 1/jaC R ' R 1}juC
then Vin=(2 + juOYV = V,,, V= Vo + joCV,
= [(2 + juO)(1 + jwC) — 1]V
—\‘o.:. ._.
or = ; N ]
Vi 14 3julC+ (jul)
and Vou :
Va b (1 — 02 CH? + 90°C

.mma_._m the magnitude to 1/ V2, we can write:
2= (1 - &’C?? + 90*C? = 1 + 70’ C? + &*C*
Let x = «*C? and write:
x4+ 7x—-1=0 or x=0.14,
taking only the positive value. Now w = 2n f = 2% 10%,

0.14
Thus C'=—— or C=595uF
472108

in |_| C e Four
- O o —

Figure 8-26 Low-pass filter for Example 8-30.
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In the practical design of analog filters today engineers most often use the
Butterworth, Bessel, or Chebyshev filters. Each of these designs is an approxima-
tion to the ideal LP filter. Each is “optimal,” or best, but in a different sense. >
detailed consideration of these filters is beyond our present scope. We mention
only a few general characteristics:

1. The Butterworth filter is noted for having a response in the pass-band -
that is optimum in that it is as flat as possible for a given filter order. .
(Filter order is just the degree of the polynomial in the filter transfer
function. The order is generally the number of energy storage devices
required.)

2. The Bessel filter has a phase response that is as linear as possible for a
given filter order.

3. The Chebyshev filter maintains a specified amplitude response in a
given range of the pass-band. Although it has ripples in the pass-band, it 3
1s monotonic in the stop-band and yields maximum attenuation for a3
specified filter order. The Chebyshev and Bessel filter are so named
because of their characterization in terms of Chebyshev _uoquoa_m_»
and Bessel functions,

So far, the discussion on filters has centered around the LP filter. By
employing some simple transformations, however, we can convert a given
low-pass filter into a high-pass, band-pass, or notch filter. Assume we have
normalized LP filter described by H(jw), where w = 1 is the cutoff frequenc
and |H(j0)| = 1. We can normalize the frequency by replacing w by e\
Replace w by —1/w and we get a high-pass (HP) filter. Replace w by (w?
@i ;) /w(w; — w;) where @, and w, are the lower and upper cutoff frequencie]
and we get a band-pass filter with bandwidth = w, — «w,. Finally, replace w b
w(w; — ;) /(ww; — &) and we obtain a noteh filter, where w, and w, are the
cutoff frequencies. The network synthesis problem of determining the proper:
RLC component values or proper op-amp configuration for a given transf
function is a more difficult task and will not be pursued here. We merely note in
concluding this discussion on filters that the Fourier transform does play an
important role in both the analysis and the synthesis of filters and that filters of a
variety of types are being used more and more in technical devices of all kinds.

8-6-2 Amplitude Modulation

Consider an application of Fourier analysis to amplitude modulation (AM).
Although there are many ways to indicate the AM modulated signal, we will
employ the form;

F@ = (1 + ms(e)) Cos w.r (8-69)

This represents what is called double-sideband amplitude modulation. Assume
the audio signal is s(¢). Also, assume it is bounded in magnitude by 1.0 and its
highest frequency is w, « w,, where w, is called the carrier frequency. Let m, the
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5{t)

Figure 8-27 Triangular pulse train.

index of modulation, range from 0 to 1. Now the term 1 + ms(t) varies slowly
compared 10 Cos w,t, which means that we can view | 4+ ms({) asan osco_ovo.ﬁo
Cos w.t. The term } + ms{?) functions as the amplitede of the Cos w, ¢ sinusoid.
As 5{?) varies, this sinusoid then has an ampiitude that varies with :ﬂzn" ,_,_._.n
amplitude is said to be modulated by the variations in s(¢}. For Emﬂmson.. _:.3 is
a triangular pulse train as in Figure 8-27, then f{7) might appear as in Figure

8-28. To consider the spectrum of f{(#) in an explicit fashion, let s (1) = Cos w,t, a
very simple audio signal, but sufficient for purposes of illustration:
F(ry = (1 + m Cos w,) Cos w,t
m
= Cos w.t + ™ Cos (@, + w)t + = Cos (w, — w)t (8-70)

2 2

Expressing these cosines as complex exponentials, we can write the following:

(1) = 3o/ + Je 7 4 7 L edtecru

M ieerade | M ey | M eed -
+ Mm + 2 e + 2 e (8-71)
This time function has the complex Fourier line spectrum indicated by Figure
8-29. Note that all these frequencies are relatively “high™ frequencies, i:mnr.mmn
essential for long-distance transmission. After this signal is transmitted _.w is
necessary to recover s(t), the signal of interest. This is called %Ec._:_»z.:._.
There are many schemes available to do this, the simplest of which probably is

fit}

Figure 8-28 Plot of a typical A.M. signal.
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Figure 8-29 Spectrum of an A.M, signal.

the detector or envelope demedulator, a circuit that is shown in Figure $8-30.
Referring to f(r) in Figure 8-28, we find that if this signal is input to the circuit of"
Figure 8-30, the rectifier will pass the positive portion of f(r) and the RC filter
with RC = 1/ew,, will transmit only the envelope of this positive portion. The:
output will then be a reasonable facsimile of s(r).
Now let s(r) be generalized somewhat to be a time signal that is
band-limited—instead of just a single sinusoid. Such an s(¢) will have a Fouri
transform S(jw} perhaps like the one in Figure 8-31. Band-limitedness in realit
is a fiction because it implies an s{¢) that is of infinite duration. Often, however, a
signal will display a spectrum that is negligibly smail outside a certain band
These signals can be approximated by a band-limited spectrum, which is usefu
at least for the purpose of illustration. Consider the Fourier transform of the f(#
of Equation 8-69.

F(jw) = m8(@ = w) + 73w + @) + 2 S(itw - ©,)

n mm;ﬁ jo+w) (872X

This equation indicates that S(jw) is shifted to yield a spectrum like the one i
Figure 8-32. Again, once the modulated signal is transmitted, there is the need 19
demodulate. Again, a circuit similar to the circuit of Figure 8-30 will process th
received f(¢) signal and yield a good approximation to s(f) at the circuit ontput

So far, all this AM discussion has focused on what is called asynchronous
amplitude modulation. This refers primarily to the demodulation side of the'§
system. In asynchronous demodulation there is no need to have available an;
oscillator synchronized to the carrier frequency w,. We merely send f(¢) throug
a circuit like that in Figure 8-30. Why is this advantageous? Employing an 3
oscillator at the receiver synchronized to w, is a costly venture as well as a tricky

Cm

Input
(modulated)

o |
1

Y¥VY

Cx

<

Ouiput
(demodulated)

Figure 8-30 Detector demodulator.

ot
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S(jur)

Figure 8-31 Transform oﬁ a band-limited signal.

stabilization problem. For accurate signal recovery, the receiver oscillator must
be set and maintained at the exact m_.nmnn_ﬂk and phase of the oscillator at the
transmitter. This is called synchromous amplitude modulation and although it is
practically more difficult to implement than an asynchronous system, it is
conceptually appealing because of its simplicity. We will present its fundamen-
tals which will then be useful in a discussion of multiplexing.

In synchronous AM the transmitted signal is typically expressed as:

() = 5(8) Cos wt 8-73)

Again, assume w, < w,, where w, is the highest frequency in s(r}. We illustrate
this with the band-limited signal whose spectrum is represented in Figure 8-31.

SUlo + w]) + SGlw — )
2

Then F{jw) = (8-74)
A plot of this would be similar to the one in Figure 8-32 except for the impulses at
w = +w, Transmission of f{1) proceeds just like in the asynchronous case. The
major difference occurs at the demedulation receiver side of the operation. To
demodulate the received f(z), we multiply by Cos w.z and then perform a LP
fittering operation. The frequency of this cosine must be exactly the same as
(synchronized to) the frequency of the cosine on the transmitting side of the
operation. This synchronization probiem, keep in mind, is the difficult part. Here
is the way it works:

1 + Cos 2wt
£() Cos w.t — s(t) Cos* wt = s(£) % (8-75)
and this has the Fourier transform:
. . T 2
F{ju)
—we - W, —w,+ W | S

Figure 8-32 Transform of a modulated signal.
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This specirum appears as in Figure 8-33. Note that the shape of the part of the
spectrum centered about the origin is exactly the same as the shape of the
spectrum in Figure 8-31. This implies that we nced only perform a LP filtering
operation to recover the original s(t). An ideal LP filter with cutoff frequency =
W will suffice. Deviations from ideality of course will produce some distortion in
the received signal. This is where trade-offs become essential.

8-6-3 Multiplexing

Multiplexing is a technique of simultancous transmission of a number of different
signals over a single channel. : .
We consider here a type of multiplexing called frequency-division-
multiplexing (FDM). In this process each input spectrum is assigned a distinet:
frequency band. The modulation and demodulation in an FDM system are both ;
based on frequency translation. This is very similar to the synchronous AM
discussed previously. Although large numbers of signals can be handled simulta
neously, we examine only two of them. This will illustrate the procedure without |
too much clutter.
Imagine that we have s, (f) and 5, (2) as information signals. Assume eachis-
band-limited with Fourier transforms like those in Figure 8-34. If we modulatg’
5,(1) with Cos w, ¢ and s, (¢) with Cos w ¢, we can form the signal x(#):

x(1) = 5,(#) Cos w,t + 5,(1) Cos wy!

S,(le + o) + Sl — wi])
2

then X(jw) =

N ,w.ucmﬁ + ws]) w Sy(jlw — w)) Am-qmu

which has a spectrum similar to that in Figure 8-35. It is important here to make
sure that the spectra do not overlap; that is, w, + W, < w, — Wo. The signal x(¢)
is then transmitted and received and must be demodulated to recover s, () and
s,(f). In view of X(jw) in Figure 8-35 to capture the spectrum of 5,(), we would
need a band-pass filter centered around «, and for s,(r) a band-pass filter ;
centered around w,. Then, with the output of each of these band-pass filters, we .
would proceed as in the case of synchronous AM demodulation: Multiply by
Cos w1 (or Cos wyt) and pass through LP filters. The overall system of

FT{f(tyeoswt }

A\

Figure 8-33 Spectrum of the synchronous demodulator.

/N

2w, w

£\

-2t - W
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8\ (w) 5 (f)

, |

Figure 8-34 Transform of S, and S, for the FDM system.

W, w —-W, q W, w

modulation, multiplexing, transmission, demultiplexing, and demodulation is
illustrated in Figure 8-36.

Of course, the FDM system presented here is idealistic. As in the
synchronous AM system, we need ideal LP filters, one with a cutoff frequency =
W,, the other with the cutoff = W,. The w, and ©, frequencies on the
demodulation side must be perfect matches of those ogdhe modulation side. The
band-pass filters must also be ideal. The band-limitedness assumption is very
troublesome in FDM systems. Since no real signals are ever band-limited, the
X (jw) spectrum will display overlap between the distinct frequency bands. This
overlap results in a phenomenon called afiasing, which we will consider in greater
detail in Chapter 9. Although many simplifying assumptions are involved in this
discussion, these are the rudiments of frequency-division-multiplexing. Exten-
sion from two to n signals follows in a straightforward manner.

8-6-4 Frequency Modulation

Fourier methods can also be usefully applied to other forms of modulation. Angle
modulation consists of two basic types: phase modulation (PM) and frequency
modulation (FM). The preceding discussion on AM started with the typical
carrier signal f(r) = A Cos .1, where A = 1 + ms(t) in the asynchronous case and
A4 —-s(f) in the synchronous case represented the time varying sinusondal
amplitude. Now let:

(1) = ACos 8(¢t) = A Cos (w.f + 8.) (8-79)

where 8, is the phase and w, is the frequency of the carrier, Assume A is constant.
In PM the phase is modulated so that:

B = 8.(1) = by + ky (2} (8-80)

x(fe)

Figure 8-35  Spectrum of x(¢} for the FDM system.
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e 0 s O ma ] gl
) Channel of
COs W ! transmission

5300
COS Lty f LOS €y f

Figure 8-36 Frequency-division-muttiplexing (FDM) system.
In FM the frequency is modulated. This is done by letting:
!
B(r) = w.t + 5‘\“.. ws (1) dt

Then the instantaneous frequency w;(f) is:

i) = 0 = 0 1 ka0

Since the mathematics of general angle modulation can get very complex,
consider here only some basic FM ideas. Also, since even basic FM analysis ig
difficult, we deal with the special case where:

(1) = Cos wyt (8-83)

In spite of the simplicity of this assumption, it should give some good insight ::
the concept of frequency modulation. From Equation 8-81 we obtain:

k
8(1) = w.t + — Sin wet
“o

Then Sty = 4 Cos {w.t + k Sin wyi)
. — A Re Je/tod+kSina)

= ARe *NME}N;‘NM_._.:.B;

= wt + k Sinwyt

The second complex exponential can be expressed. in terms of the Bessel
functions:

e = Y J(k)er

= -«
Bessel functions, J,(k), arise as solutions of certain kinds of &:.n_.n:mn_@
equations. They are tabulated functions, available in any extensive tables of
mathematical formulas. The Fourier transform of f{f} can now be written:

F(jw) = ARe M J (k) 6(w — w, — nug) 27w (8-87)

Hm —cx

and since the right-hand side is purely real, we can write:

FGDY = A S J(k)S(@ ~ w, — nap) - 2 (8-88)

[ ——
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Figure 8-37 Spectrum for an FM signal.
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Then the FM spectrum consists of an infinite number of impulses centered
around @ = w.and would appear as in Figure 8-37. Each impulse is weighted with
a value obtained from Bessel functions. Such signals are called wide-band FM
signals since there are now an infinite number omcaovm:n_m The weights of the
impulses representing the sidebands, however, Become negligibly small after a
very short excursion on either side of w,.

These are just the very basic ideas associated with frequency modulation.
We have generated a signal that is of sufficiently high frequency to be
transmitted. Then, of course, it will need to be received and demodulated. FM
demodulation is a more difficult task than AM demodulation. We will leave it for
a more involved study in the area of communication systems.

8-6-5 The Sampling Theorem

As a final application of Fourier theory we consider a theorem that has had an
important impact on very large sectors of the technological world, especially the
digital areas. The theorem discussed in this continuous time Fourier chapter can
provide the introduction into the next chapter which deals with discrete time
Fourier analysis. Very often discrete signals are obtained from continuous signals
via a process of sampling,

There is a famous theorem called the Shannon sampling theorem which
delimits the sampling process. It says that if f(¢) < F(jw) is band-limited by
—wp < w < wg, then f{t) is recoverable from its samples f(nT), n = 0, =1, ...
if:

wp > 2wy (8-89)

where wy = 27/ T is the sampling frequency. To illustrate what is involved here,
we can employ Fourier transform ideas. Let f(f)s(¢) = g(¢), the sampled
function. Assume that f(7) is continuous and that s(z) is a sampling function

£(ry — solid lines

A \\._A_: — naznn_. lines

- - ~

] )

| 1 L O 0 ™M e . a2 o1
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consisting of a train of narrow pulses of amplitude 1, wnumamﬁ..u ﬂw T .H.::o units. 3
Then g(z) might appear as in Figure 8-38. Since f(¢) is band-limited, in o_.nn... to 4
illustrate the sampling theorem, we assume F{jw) is asin Figure 8-39, 7.52 since

s(f) is periodic, we know that it has a complex exponential Fourier series
representation: ;

5

(590)

s(8) = M cel™
and SGw) = 3 2me,dle — nap) (8-91).

A= —t

From the frequency domain convolution property we know that:

F(jw)*S(jw)
2r

g(1) = f(1)s(t) = GUw) =

. | I , %
Therefore G(jw) = 5= % F(iB)SU(w — B))dB (8-92)
Since S from Equation 8-91 contains impulses, Equation 8-92 is easily integrata-
ble. We obtain:

o

G(jw) = 2 euF (jlw = mu)) (8-93)
illustrated in Figure 8-40. To recover the exact shape of F A Jjw) we only need to A
pass g(¢) through an ideal LP filter whose cutoff frequency 18 wg. Zoﬂ.n, however,
that we are assuming w, > 2wy exactly as the sampling theorem requires. If wy <
2w;, we get overlap in the spectrum of G ( jw). Then f1 S.mm not 88«6.329 This
critical frequency, wo, which is the sampling frequency, is also sometimes called
the Nyquist frequency. o
To conclude this section we mention an application of the sampling
theorem to communication systems. Modern data communication and S_nﬁwonﬁ
systems often employ a technique called time-division-multiplexing Q.U?c. I
this process a large number of samples of different signals are m_.muma_.x& over.
the same channel. Upon reception, complex synchronization n@EuEwﬁ is needed
to separate the various signals. Then from the samples the original signals can be
recovered. This requires, however, a Nyquist frequency not just of wg, but if we
multiplex, say, N signals, we will need a Nyquist frequency of Nwo. ﬁ.E.En_. .
aspects of sampling will be considered in the next chapter when we deal with the
discrete Fourier transform.

F(jw)

—wg ﬁ Lig L)

Figure 8-39  Spectrum of f (¢)- -
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G (jw)

—wg A Wy x Wy w

iy g

Figure 8-40 Spectrum of g{¢), the sampler output,

SUMMARY

This chapter considered the Fourier analysis of continuous time functions f{(z).
The spectral content indicating the frequencies of significance contained in f(¢)
played a large role in this chapter. For periodic f(¢)’s the spectral content is
revealed via the Fourier series analysis. We discussed the trigonometric, general-
ized, and exponential Fourier series. From the exponential Fourier series we
developed the Fourier transform to deal with nonperiodic signals.

In the Fourier transform development a number of illustrative examples
were worked out, then many properties were considered. Most of these properties
were based on the defining integrals:

F(jw) = .\ " fe dr

1 uN_Ia\.wmQ&mE dw

Following the properties of the Fourier transform, a brief section was presented
in which the Fourier and Laplace transforms were compared.

A few applications of the Fourier transform were considered in the last
section. Among these applications were some brief discussions of analog filter
design and amplitude and frequency modulation. Also, we discussed some
multiplexing ideas: frequency- and time-division-multiplexing. Then we con-
cluded with an introduction to the sampling theorem. Further applications of the
Fourier transform will be dealt with in the next chapter when we study the
Fourier analysis of discrete time signals.

PROBLEMS

8-1, Determine the trigonometric Fourier series expansion of the periodic signal f(?)
where f(t) = {*for0 < ¢t < 2xrand T = 27,

8-2. Determine the exponential Fourier series expansion of the periodic signal f()
“where f(t) = e 'for0<i<2and T=2.

8-3, Consider the following set of basis functions, orthonormal over 0 =< t < «.

-
$ (1) = 2Ze ™, t=0
=0, i=0
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mwb.m avmﬂﬂv = ONIM__ — ...uml__._ I = Q
=0, t =0

Let
fy =27 120
=0, 1<0

Determine f(1) = cid, (£} + ¢,9,(1) and examine the accuracy of this approximajy
tion using Parseval’s relation.

8-4, A certain system has a sysiem function:
s

i

H(jw) - ———
() Ju+ 10
Assume that the input x(¢} is periodic with period 2

10, 0<t=<l
and Xt =15 _MHMN

Unﬂn:.:m:nﬁclrnmwwﬁnﬂsoﬁvﬁ.
ﬁm.m.w../» nsider
L
_ S =fa+2)
u_|:__

(@) Sketch f(z). £7(1), £7(t). Do not forget the singularity functions that ma :
occur. 'y

{b) Let

for —-l<t<1

£y = 2. Ge™
Determine the Fourier series coefficients C,.
(¢) Find the relation between the Fourier series coefficients for f(¢), f'(¢), ang
S
(d) Express f(z) in an exponential and trigonometric Fourier series.
{e) Find the Fourier transform of one period of f(£). £'(¢), and f"{1).
(f) Evaluate the exponential Fourier coefficients from the transform of a sing
period of £(2), f(2), and f"(¢}. Compare these with the results of parts (b} &

(c).

' 8-6. Given the transform pair:

Evaluate:

(a) &Q. “efdt
(b) \ﬁ_. " %" dt

8-7_/Find the Fourier transform and plot | F(jw) | versus w for the following

@) f(£) = e u(2) — e"u(—1)
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Sin 2

) Sy - ™ (4 + Cos 201)
i

<

© 7(1) = 22 Cos? 501
it

N,
m-m%o:mao_. the following periodic f(1):

fin
i

'

N LN

For this f(1),

-.__,

-F——

. Sin*(nx/T)
" xuu__-u\q. .
(a) Assume T'is very large so that Sin (#7/T) = nr/T. Determine T such that €y =

1/100.
Loy T 84 B
(b) Now let T = 3 and determine the encrgy mw J(t) and the energy in
2

f) = 3 et

A——2
- Compare results,
8-9. Consider a periodic
St} = A, 0=<t< H
2
[
T

=4, M <t<T

Tis the peried.

(a} Determine A if ¢; = 2/x |90°

(b) Determine A if ¢, = 2/x |- 90°
... . {€) Determine ¢, if 4 = 10,

w.:-n\} nn:m._m: periodic f{#) has the Fourier series coefficients: ¢, = 5;¢, = 2 + 2 Jic_y =
= 2 + 2 f; all other ¢'s = 0. We can write _ T

S@) =fil1) + jf),
a complex time function. Determine f;(¢) and f,(r).

m“\_ . Let

J@) = F(je) = R(w) + jX{w)

Assume f(#) = 0, for r < 0. Let:
X(w) ="
and R{w) = .\a.,s £(2) Cos wt dt
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Determine g(f). [This problem is nontrivial. Hint: Solve for R{w) as a function

X{w)]

W 8-12. Determine G{ jw), where g(1) = ddi’ (f(£) Cos 21) and g(r) < G(jw):

,_ 5
! O+ FGo) = 5
Tw-_u. Let f{#) be two impulses:
_ [ty = At ~ 1) + BS{t — 1)
Assume:

F{jw) = e Cosw

Determine suitabie values for A, 8, ¢,, and ¢,.
8-14. Let:

Sy —wlt) —ult — 1) + ult — 2y —u{z = 3)
{a) Determine F{ jw).

(b) Let:
gty = f(1)

| Determine G{ jw).

| 8-15. Consider the following RLC circuit.

!

. ] +

o
LH
.::ﬁuu Sie vin

18 [

(2) Determine H(jw) = Y (jw}/X(jw) as a function of C.
(b) Determine C such that | H(jw) | = | at w = ¥2r/s.
{¢) Determine the phase of H{jw) atw = »\mw.\.m and C = 1F.

16. Let f,(¢) = Cos t and let £5(¢) be as follows:

f:4N
1

T IS

b =

1
2

Determine the Fourier transform of:

Sy = [)f2(0)
, fm\\ Let:

1 + jow

FUe) = g 6o + G

= f{1)

PROBLEMS

and £(1) + 22(1) + g(¢) = £(£)
Determine G (jw).

8-18. A certain system:

100
H{jw) =
/) (jw)? + 0.2jw + 100
has an input:
1 2 10 2 2 50
£y =5 +—=8in—t + —8i — 8in—
x(1) 3t = _=w~+uaw5_9+mﬂm5uu+

Assume that the output is

y(£) = ksin (wyt + M

Determing &, w,, and &.
f
._
I

8-19. Let:

i

J€) = 3u(t) — 3u(t = 2) + 3u(t - 3) — 3u(t — 4)
Determine the energy spectral density for £(z)

and .\.. * Fw)F (—jw) dw
8-20. For a certain f(¢):
Ve 1
F{jw} = w|
+ jw
(a} Determine .\,.QAG dt. Lo
{b) Let: |

Fi(jw) ~ £10) = ['FO)
Determine F, ( juw).

8-21. Let:

FOy =u(t + 1) —ut — 1)

(a) Show that £{¢) can be expressed as follows:

Sin w
Cos w! dw
@

A - -
(b} Determine £,
8-22. Let:

Sin?z
MM

S =

Using Parseval’s equation, determine .\“ T fl)tae

345
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8-23. Determine the autocorrelation function R(7} for:

(This is just the correlation of a function with itself.)

8-24. Show that the inverse Fourier transform of E(w) = F(jw) F(—jw) is the autgeor
lation function of £{r). Show that the autocorrelation function is an even funciion

its argument,
8-25. Lot

v

7y - Aufr + &) - Aufr -2

a
2 2

RS [710 - D100

F(jw) =

10 + 2juw

(5 + 3jw)(2 + jw)

Determine the Fourier transform of'

@ f()Sinwyt  (b) f(¢/5)

© () @ &°fde’ f(r)
mﬁm&ﬁ F{t) > F(jo). Show that:
Ece:m_h_,.\..u mw dr,  forn=0,1,2,- -
| where | @ |® = 1 and | d%/d® | = | fI.
| 827.-
i Fi(jw) = filn)
and Fy(jw) ~ f1(1)
Let:
Fjo) = —
(5 + jw)(2 + jw)
Let:
Fy(jw) = Fi( (e + ) + Fi{j{ew — w))
Determine f,(1).

8-28. Determine and sketch the autocorrelation function for £(#)

where

S0

1
L] i - A
0 < 3
10 _ t<=0
—10, IMA <
10, O0=1¢ !
-
L] A N
1
0, t>-=-

| 8-
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Determine the autocorrelation function of f(¢). f(¢) is the periodic version of £(¢).

Assume T = 2.
8-29. The power spectrai density of a continuous random process x(¢) is defined as:

Sul) = [~ Ro(r)e ™ dr
m.:.”_ the cross-spectral densities for processes x(¢) and p(¢) as:
S, (w) = .\., " Rytr)e dr
and S,(w) = \. " Ry(r)e " ds

Using the properties of correlation functions, show:
(@) Sy(w) = S (~w)

b) P~ x%(1) = S, () df
(€) S,() - S¥(@)

(d) S..(wy) Af is the total average power from a narrow bandpass flter of
bandwidth A fabout ;. Demonstrate that all these properties hold for a process
with autocorrelation function R, (r) — e ™ and cross-correlation function

R, {(7) =3¢ le—41,

8-30. Given the input 1o a linear system with system function H( Jw) is 2ero-mean noise
with a power spectral density S,.(w), transform the time domain results to show:

.W.ENAEV = _ mASU _M,Wv.kﬁﬁv
.m.&.ﬁnnv = ,w.kumn&:mev
and Spe(w) = Sy {w)H(~w)

8-31. Given a linear system with system function H{w) = 1/2 + jw has as its input
noise with actual mean square fluctuations .ﬁﬁv = 20 and power spectral d
S.w) =2, find

(@ $,y(@), S,w), and Y1) = [ 75, () df

R (b} Do the spectral quantities have the desired properties?

u\uu_ Consider the frequency-division-muttiplixing system:
Si

¥n 4+ )

mt X

yi(1}
yi£)

Cos 100 ¢ Cos 100 £

" Bin s yali)

white
ensity

i

k

Cos 500 ¢ Cos 2000 ¢

The blocks labeled LP are ideal low-pass filters. The top filter has a bandwidth
—4 =« = 4 and the bottom filter has a bandwidth — 1 =< w < 1. Determine and plot



248 8/THE FOURIER TRANSEORM ij_“uﬁmm. @

Y (jw), Yol jw), Z:( jo), Z,{ jw), wi(1), and wy(?). Y(jw) < p(t) and Z{ju

. 2(£).
_,\\ 8-33, Lonsider the fellowing system:

()= (1) ¢(? B{t)
[ F—()

Cos 44

The Discrete Fourier
Transform and the Fast
Fourier Transform

v
o

The block labeled LP is an ideal low-pass filter with bandwidth -2 = eMu The
time function f(¢) has a Fourier transform F(jw) = 10{u(w + 2) — ule'™ Nt
Determine and plot Z{juw), @(jw), P{jw), and g(t).

\.J . Z(jw)—z(t), QU@ < q(t),  P(w)—plt)

w..\nt_& A low-pass filter has the system function: -

‘ 10010 + jw) ._
HUe) = G je) (20 7 Jo)

Determine the cutoff frequency w,. Then normalize the frequency by 3&&5@
by w/wq. Convert this normalized low-pass filter into a band-pass filter whest w, =
50 and w, = 40. w, and w, are respectively the upper and lower cutoff frequancies
Plot the magnitude of this band-pass filter. : INTRODUCTION
In Section 8-6 we illustrated the essentials of the Fourier analysis by considering
a number of applications. Most of these applications were from the communica-
tions area. Another area of engineering science that is becoming increasingly
important is that of signal processing. Within this field, the digital or discrete
Fourier transform is beginning to play a large role. Real signals, like radar
tracks, which are often processed with the Fourier transform in order to reveal
their spectral content, are typically measured at discrete points in time, resulting
in discrete time signals, f (7). These discrete or discretized time signals call for
some kind of discrete Fourier transform (DFT).

Thus the need for a DFT arises from discrete signals. From a slightly
different point of view, let us recall the definitions:

F(jw) = \Hsb%% dt (9-1)

1

and FACHES o

[ FGwye ™ do (9-2)
The numerical computation of these integrals using digital computer processing
requires that we take the continuous signals £ (¢) and F( jw) and discretize them.
Also, we replace the integrals by finite summations. These manipulations lead
directly to a discrete Fourier transform and an inverse discrete Fourier transform
(IDFT). After a discussion of the DFT and the IDFT, we consider the problems of
aliasing and leakage and the technique of windowing, all of which are relevant to the
DFT. Then we investigate some of the DFT properties, after which we examine some
efficient ways to compute the DFT and the IDFT.




