Chapter.

The Fourier Transfo

INTRODUCTION

This chapter will develop the Fourier transform and discuss a num
properties and applications. The material is treated in a manner slightly
from previous transform chapters: instead of starting with the Fourier t
definition, Fourier series analysis will provide our point of departw
conceptually and intuitively appealing ideas of Fourier series anak
probably familiar to most readers. However, we begin from basics in Se
and then briefly consider the generalized Fourier series in Section 8
Fourier transform is developed in Section 8-3 and early emphasis will be'§

- on deriving a number of Fourier transform pairs, that is, the time functigsy
and its corresponding transform F{jw). In Section 8-4 a number of
transform properties will be developed, including the time-shift property
convolution property. The last section in this chapter examines a nw
Fourier transform applications, including filters, modulation, and multi
For the most part, the signals considered in this chapter will be conts
Chapter 9 deals with the Fourier analysis of discrete signals,

Jean Baptiste Joseph Fourier (1768—1830) was a French mathe
and physicist who did extensive study of heat conduction. He developed
now called the Fourier series analysis to be applied to the sotution of
differential equations that arose out of his heat conduction studies. The#§
some heated controversy surrounding his publications, however, because B
not able to prove in a general fashion that his infinite series of sines and @
actually converged to the function they were supposed to represent. No one
prove it at first. It took about a hundred years and the invention of the Lel
integral to do the job. For an overview of Fourier’s life and times see Oppe
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willsky, and Young, pp. 162-168. One rather strange thing in Fourier’s life
might be explained by the time he spent in Egypt and his interests in Egyptology,
as well as his intense involvement in heat studies: He believed dry desert heat to
be ideal for health and lived the latter part of his life wrapped like a mummy in
overheated rooms. Genius is permitted its eccentricities!

To motivate this Fourier analysis project, imagine that we have an ()
sampled to yield f(n). Then, recalling Equation 1-15, we can write:

J) = 3~ f(k)s(k — n)
i
Thus any f(#) can be approximated by a sum of unit pulse functions. The (k)
values are constants that represent samples of the original £(2). If f(n) is the
input to a linear system with unit pulse response A(7), then the output of that
system—as we saw in Chapter 2—was g(n), where:

g(n) = f(n)*h(n) (8-2)

The response of a linear system to a signal represented by unit pulses requires
convolution. Determining the input signal representation is usually easy com-
pared to performing the convolution required in Equation 8-2. Not only is
convolution difficult to perform, but also the convolution operation calls for the
unit pulse response function which may be difficult to determine.

Different kinds of representations of signals, however, might permit
simpler response calculations. We know, for example, from sinusoidal steady-
state circuit analysis that representing signals as sinusoids is computationally
attractive. If the input to an RLC circuit is a sinusoid, then the output sinusoid of
such a circuit has the same frequency as the input and differs only in amplitude
and phase. Representing signals as sinusoids or as sums of sinusoids has certain
advantages over representing signals as sums of unit pulses. These signals or
functions “in terms of which” a given function is to be represented are called
basis functions. We consider the employment of basis functions in Section 8-2.
ZS.a now only that unit pulse functions and sinusoids are particularly useful
basis functions. Sinusoids or complex exponentials will be the typerof basis
function that is most commonly encountered throughout the rest of this Fourier
transform chapter.

(8-1)

8-1 THE TRIGONOMETRIC FOURIER SERIES

Fouriers m...nicm developed the insight that any periodic f(¢) can be expressed as
4 sum of sinusoids. A periodic function, £(¢), is one such that f{¢ + »T) = f(t)
for all integers n. T'is the period.

Then S) =ay + > a,Cos nwgt + b, Sin nw,t

n=1

2
@y = = [ &) Cos nuet dg

(8-3)

Where (8-4)
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2 .
b= 2 [ 1(®) Sin nenf d (8
2, ... The a; term is the dc component or average value of f{f):

—o [ W (34

forn=1,

In these equations the integration symbol with “T subscript implies that we cf
integrate over any period. Also, the «, term which is called the m.—:_.ur,“—ﬁ.ﬁ.\_._"”m
angular frequency is w, = 2«x/7. Note that all the sinusoids appearing }
Equation 8-3 have frequencies that are integer multiples of the ?:QmBo:,
This Fourier series representation in Equation 8-3 is known as the trigonome#
Fourier series.

EXAMPLE 8-1 3
Determine the trigonometric Fourier series expansion of f(f) in Figy
8-1.

Solution

T=2wy=m,and f(t) =tintheregion0 = ¢ =< 1.

gt
guwxm& M =3
aau.\e,_mﬁom.gm&m
(=" -1

et

and b, = n\J £ Sin nxf dt
0

_ % Al.:__i_
HT

Theref J) + M” S _Ooaa 1+ (D™ Sin
ore - = —_— w4 — 3
4 fim1 Aaq_..vu R 1
EXAMPLE 8-2
Determine the trigonometric Fourier series expansion of f' Qv in Fi
8-2.
fiey
2
A NN A
-4 -3 -1 -1 * EE t

Figure 8-1 Periodic f (¢) of Example 8-1.
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|
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Figure 8-2  Periodic /() of Example 8-2.

Solution
T = 100, wy = 7/ 50. By inspection a, — 3.
yu% QquszamaT Emauﬁ%
+W‘\q.m§a|w m;mmwmmm
u%:ﬁumgﬁ_ﬁ&mI,%_Smmmm_::ﬂma.m +|o m.nals.mum
4%\. maaam& 0

and from an equation similar to the equation for b,, we get:

_ HCosnx/2 — 1)
" ()

a

2 3
hc:tioaii QMII leai.:

Therefore
50 50 50

Strictly speaking, the functions £(¢) that we are representing must be well
behaved in order that the series expressing them will converge. This means that
the periodic f(f) of interest needs to satisfy what are called the Dirichlet
conditions: f(¢) must have at most a finite number of maxima and minima and
finite discontinuities in one period, and f(¢) must be absolutely integrabie over
one period. Absolute integrability means that:

S @ far <o

—T/2

(8-7)

If these conditions are satisfied, then the Fourier series representation of f(¢t)
converges to the actual f(r). The Dirichlet conditions are sufficient conditions;
that is, it is not necessarily true that if the series converges then the conditions are
satisfied. Fortunately, most engineering applications employ functions that do
satisfy the Dirichlet conditions.

Now, if a Fourier series representation of a periodic signal is obtained and
this signal is used as an input to a linear system, then what is the forced output of
the system? In order to deal with this situation most effectively, we need to
express our periodic signals in a way that combines the sine and cosine terms in
the original expansion into a single term with a phase shift. We can write a
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cosinusoidal Fourier series as:
f) =ap+ 2_ & Cos(nagt + 8,) (8
n-1

Zo=+ja: + b2 and §,- —Tan"'b,/a, @

Now let x(¢#) be a periodic input to a system that has a transfer function H H
and let y{¢) be the system output.

where

Then x(#) =ay + M &, Cos (nwgt + 0,) Am_
H(jnewy) = H(jw) | yony — | Hjnewp) | £arg H(jnwy) (&
and »(t) = a,H(0)

+ 3 &, | Hjnwg) | Cos(nagt + 8, + arg H{jnwy))
A1

EXAMPLE 8-3
Consider the response y{(t) of the system H{ jw) = jo/{jo + 2) whe
input x(t) is a periodic signal of period T = 4

and x(#) = —2=t=—1

HOOmMP —l=r=1

2
=1, l=t=2

This is actually a half-wave rectified cosine function, which appears §
Figure 8-3. Determine the dc term, the first harmonic (£ ::mmanim_
the second harmeonic in the response y(7).

Solution

xSnw+ 081«|M 2(=1) Cos nwt’

2 fSw(dn-1)
follows from a straightforward (but very tedious) application of Equa
8-4 through 8-6. Now wy = 2x/T = w/2. The a, or dc term in x(¢) is
The first harmonic term in x(r) is 3 Cos ##/2. The second harmonic tet]

x(t)
1.0

Figure 8-3 Periodic x(#) of Example 8-3.
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x(#) is the first term in the summation: —2(—1)/w(4 1) Cos wt =
(2/37) Cos wt. Now from the system transfer function:
.  ; jaw/2
—Hlinz]=-2
Hjnoo) = Hlin 3| = 2o + 2
nxf2
AT {900 — Tan—t P
Vi /22 + 4 4

Therefore HO) -0, H[jT)- —=——:90°— Tan %

=0.618 £51.85°

T S
Jr + 4

H( jn) h?oo — Tan wv = ().844 / 32.48°

and in the output, we get:
dc = a, H(0) =

L 51.850| = 0.309 Cos| = + 51.85°

first harmonic = 0.618(0.5) Cos| = 5 ; 3

second harmonic = (. mﬁ Ooii + 32.48°) = 0.179 Cos{xt + 32.48°)

The concepts of evenness and oddness are useful in the Fourier series
theory. An even function f,(¢) is one such that:

fe(=1) = 1) (8-13)
An odd function f(t) is one such that:
Jol =0 = —fol2) (8-14)
An intcresting fact is that any f(f) can be written;
Sy = £48) + folt) (8-15)
where £ - E (8-16)
and fotny LD ZLED |N>|: (817
EXAMPLF 8-4
Determine and plot £,{¢) and f,(¢) if f{2) = u(t).
Solution
Fil1) - EV: - _m for all 1, except ¢ = 0
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oy = waTc —— 1 ri<o

1
=—, fort =10
N =

The only problem here is the value of these functions at ¢ — 0. Since u(t)}§
definedtobe 1.0 for ¢ = 0, then u(—t) = 1 forr < 0.
Therefore f(0)y=1 and f{0}=0
The functions f,(¢) and f,(¢) are plotted in Figure 8-4.

The evenness and oddness of certain functions can be used to simplify i

calculations for a, and b, required in the trigonometric Fourier series. Gig
some f(t), if this f(t) is odd,

then a, =0, forn=0,1,2,- - - (8

4 :
b m.\.dm f(&) Sinnwgdg, forn=1,2,. - -

If some given f{¢} is even,

2

Y GE: (

n f&) Cos nuwgt df,  forn=1,2,- - -
T Jrp2

b, =0, forn=1,2,- .-

then a,

i,

These results follow from the fact that .\w = 2 f7),if the integrand is even and’
0 if the integrand is odd.

EXAMPLE 8-5
Determine the trigonometric Fourier series expansion for the f(r) give
Figure 8-5.
Solution
T=3 2z 2
=3, = — = =T
@7 T T3
foie) flt)
1o+
. oa Q.m are Dm Fr o

Figure 8-4 f.(r) and f;(#) of Example 8-4.
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Finy
1
e . ) e
-2 1 t
-1
Figure 8-5 Periodic £ (1) of Example 8-5.
By inspection f(t) is odd.
Therefore 4 =0,b, =2 .\_E Sin n2X ¢ d
" » " w ' w
47 3 2xn
SR P | e
231 2an 2xn
thus c\.ﬁnvﬂmal_ﬂ 1 |00w4 m_=|w]n

8-2 GENERALIZED FOURIER SERIES

The trigonometric Fourier series represents a periodic function as an infinite
scries of sinusoids. In a more general sense, any function can be expressed as an
infinite series of other functions or can at least be approximated by a finite series
of other functions. Call these “other functions™ basis functions: ¢(t), ¢,(2),
$,(t), ... . Assume we can approximate f(7) over a certain range ¢, < t =< f, with
the ?:o:oEmS“ .

N

OEDIT N0 (8-20)

=0

Qroﬂoéamwvnmsma@.Oo:ﬂ.m:w%nmﬁ:m“:&Bo_.aﬁo::mioﬂmwowﬁwo&om&a
J(#) will be to f(). We will limit the possible spread of the basis functions by
demanding that they have certain properties that will result in elegant formula-

ﬂo:m‘ Insist that the basis functions be orthogonal over the range ¢, < ¢ = t,; that
is:

[
=2
+
T

[ b)) dr
—A i=j (8-21)

The asterisk (*) notation indicates complex conjugation and must be employed if
the basis functions are complex functions of time. There is a special case of
Equation 8-21 where A, = 1 for all i, In this case the basis functions are said to be
Orthonormal. Referring to Equation 8-20, assuming the ¢,s are known, the
Problem is to determine the proper «; values. To do so, multiply both sides of
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Equation 8-20 by ¢}(t} and integrate over [¢,, f;] to get:

S F @y de = > a

i=0 h

“ ¢ ()F(1) dt (8-2

But from Equation 8-21, the integral on the right is Zero unless / = j. Thus o
the term for i = j in the summation will remain and when / — f the integral on
right becomes A,. We get:

S Fwep de = ap, (8-

Unfortunately, this integral requires us to use F(#) which is what we are trying
determine. But £(2) is supposed to be “close™ to f(#). Substituting f{¢) for f
we obtain what are called the generalized Fourier series coefficients (chang
the index j to i). :

| B
=y [Tr@enn) di ®

These «; values substituted back into Equation 8-20 give f() as the §
approximation to f(¢), best in the sense of what is called the “minimum mj
square error.” The function F{(r) is supposed to be a good mﬁvaox_am:c: to

The mean square error {MSE) is a measure of how good “good” mm.
t N 2
—— {7 f() - )| dt
MSE ~1:'\ | £ Wnéé_

Intuitively, as NV gets larger, in most cases the MSE gets smaller. If limy ...
= f(t), then the basis functions are said to be complete. In this case the Zwm..
and by equating mb:m:o: 8-25 to zero we can derive what is called Ps
relation:

\_{S dt = M | o |2,

EXAMPLE 8-6
Demonstrate Parseval's relation.

Solution. Carry out Equation 8-25:

1 o N
MSE = —- \ I OERL0) m adi(t)

03 a0 + 3 a0 3 ater)|

since for complex numbers | z |* = zz*, From Equation 8-21, we get the
term:

N./.JL,_D“_N

h, — 1 e
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But the two middle terms become:
N
M “ &; _NW
t, — H 2o

from Bquation 8-24. This assumes that X, and f(r) take on only real values,
whereas ¢; and &, may be complex.

1 ¢ 1
H MSE-—— [ f()dt - —-3 uw
ence mlr.\:.\a: Py | o
and if MSE — 0,
then \. “£p) df — M Lo |2\

=0

which becomes, as N — «;

[rrwd =2 lal

Parseval’s relation is an equation relating energy in the actual signal to
energy contained in the signal’s representation. If we can make the calculation on
the left side of the equation— call it E—then it is often desired to compare E, not
1o the infinite sum on the right side, but to the sum of a finite number of these
terms. For example, we might want to take enough terms in the summation such
that the right side is at least 95% of E. Or we can calculate (E — 2| a; |"\)/E as
a rclative energy error and try to minimize this term. In the real world we
typically approximate a given f(¢) by as few basis functions as possible. The level
of accuracy needed in a given problem is usually determined by the overall
problem context.

EXAMPLE 8-7
Assume we are given the basis functions ¢, ¢,, and ¢, of Figure 8-6.
Approximate:

HOEE D=<t=1

=0, otherwise

in terms of ¢,, ¢,, and ¢ mm%s = o ¢ + ez, + a3, and determine the

relative energy error.
j e

6_ ﬁm

-ik L
Figure 83-6 Basis functions for Example 8-7.
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Solution. We need to check our basis functions using Equation 8-21. In ;

total, we have six integrals to compute. Since .\M ¢, dt = 1fori=1,2,3

and .\M ¢4, dt = 0 for i # j, we can conclude that the basis functions are
orthonormal and A, = A, = A; = 1. From Equation 8-24 we have: .

Q_u\_u._u&uo.m,

En%ﬁ_pu“&|.\h~&ulo.mm

.. - 0.75
and Eu‘\o_a“&|,\,3§.~+‘\ £ dt
0 .25 0.5

|%_§u —0.125
035
F(1) =054, — 0.25 ¢, — 0.125 ¢,

A comparison between f(¢) and f{(2) is shown in Figure 8-7.

Therefore

1
_ e Uz 2 0313
Also, m|\=x& &_,.:: 31710 -033
and T e\, — (0.5 + (0.25) + (0.125)* = 0.328
—Tad 03330328
Therefore E-Zad 0333 — 0.0146 — 1.46%

E 0.333

This small error implies that () very closely approximates f(2).

Now in these generalized Fourier Series representations we have assumed;
\ finite time duration is of interest: ¢, =< 7 < #,. If we are dealing with periodici§
ions, then that duration can be considered to be one period of the periodic:$
ion. Let us apply the generalized Fourier series ideas to the development of.3
omplex exponential Fourier series. Assume we are given f(z) which 13
dic with period 7. Let ¢,(¢) be a complete set of basis functions: ¢,(1) =
n=0,+1,+2,..., wherewy = 27/T.

D -
-m -
_o N Lo

Sl fio) o

— fo

—rl )

0.5 1.0 !

¢ 8-7 Comparison of £ (¢) and f (1) for Exampie 8-7.
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L

Then SO =F0) = 2. a8, (8-27)
The one-sided summation used in Equation 8-20 in this case becomes a two-sided
surnmation. This is permissible because we have an infinite number of terms and
the indexing is arbitrary. For purposes of symmetry, the two-sided format is
convenient for the complex exponential Fourier series. Note that » instead of | is
the index in Equation 8-27. This is because the basis functions here are complex
and contain j terms and we want to avoid mixing / and j terms. Mathematicians
use  where engineers typically use j. Also, the basis functions employed in this
representation are orthogonal over 0 < ¢ < T with A, = T for all n.

EXAMPLE 8-8
Prove that the exponential Fourier series basis functions are orthogonal
withh,= Tlorallnover0 <t < T.

Solution

b ﬁaﬁmuﬂﬂ*ﬁuv B._u == «\;nn+u.m.._“=§u__ m..n___,__.__.nsv__ mﬂm
h

iy
|
Jaoln — m)
but # — m = k an integer and e/ gfokT _ giinklo _ givekh (pJankT _ 1y gnd
wokT — 2wk and #/* = 1. Thus the term in square brackets — 0. Only
when # = m will things be otherwise. When n = m we get:

Tk_..iTérid _ mgiTéa_

"o t)eE()di = [T dt =T

H Ty

"ok () dr = T,

]

Therefore ifn=m

=0, otherwise

and the exponential Fourier series has orthogonal basis functions with A, —
T for all n.

Now any periodic f(¢) can be written

L

S = D ap.() = M o, ! (8-28)

M= —x N

In order to determine «,,, we use Equation 8-24:

oy — w [ e dy (8-29)

These are called complex exponential Fourier series coefficients and usually are -

written as ¢, instead of a, in order to distinguish this particular Fourier series.
The complex exponential Fourier series is closely related to the trigonomet-

ric Fourier series. The relationship between these representations can be made
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explicit by applying the Euler identities. We can write the complex exponential in

' T ! g complex Fourier spectrum. Generally, these plots are points, discreie numbers at
Equation 8-28 as Cos nwyt + j Sin n#wyt. Then comparing Equation 8-28 to the

discrete values of nw,. We can make the plots more dramatic by dropping the
points to the nw, axis to form line spectra, typified by the plots in Figure 8-9
which represent the line spectra of the previous example. These lines indicate the
spectral content of the signal. We normally plot the magnitnde and phase line
spectra as functions of nw, instead of just # because later, in the development of
the Fourier transform, we will have w as our independent variable and w comes
directly froin nwy.

Observation of Figure 8-9 reveals an interesting result: The magnitude
spectrum is an even function of nwy and the phase spectrum is an odd function of<
nwy. This is true for the f{¢) of Example 8-9, but is it always the case? To
determine what must be the case for ¢, to have an even magnitude spectrum and
an odd phase spectrum, we take the complex noE:mmS of Equation 8-29, with o,
replaced by ¢,:

P_.l., Cp+ €,
&a H%An.: - ﬁ.lav
|s~.&=

a, + jb
ﬁ..,.-“-__| NBQ Fd E

3 = 2 . form=0 -

(8-30

EXAMPLE 8-9
Determine the exponential Fourier series representation of the periodic f(¢)
which = &,0 < t < 1, and which has T = 1. This f(#) is sketched in Figure

8-8. 1 )
ar== | {f(e)e ™ de}*
Solution \H,\%
1 1 — gl 1 1_j 1 . — gl | #
- - — f -_— {e'- - == 4 dt
wy = 2, nwlm.\a. e L_Eiuul_luaﬁoﬁm e 1) ﬂu\.ﬂ.qﬁ Cind
—§ _ Lmjmlw - _ ;
But et e _ = ﬂ,\, fHeye™ dt (8-32)
and o' _ gl — 2718 7 .
’ — Now from Equation 8-31
Theref A nd S -1m8 Y ,
erefore Cy = 1~ jn2m and f(r) = —~ T 2 I..Sus. c*= ___nmxeav_ %Aaeoz* =1 |e(rw, )| plilnen)} %

= |e(may)| e (8-33)

Assume that the magnitude is an even function of nuw,,

1,718 M

Often, the relationship beiween f(¢) and ¢, such as the relationshi
between f(t) and its Laplace transform or between f(#) and its Z transform, ;
indicated by the double arrow notation: f(z) «— c,. Note that ¢, in the last

— Jrw,

then el =nwo)| = [c(mwg) ]

Assume that the phase is an odd function of nw, .

example was a complex number, We can write: then 9 —rwwy) = —B(ney)
= |cal 8, = [e{nwo)) Blne) (8-31, Therefore c¥= |o(—nwy)| e = ¢, (8-34)
If we plot |e(nuw,) | versus nw, and B(nw,) versus nwy, we have what is called the:
: ) . 1.718
C /
fin Gl L \ 9, 90° —_
! \ -
/ N 0.270 ’
S 0136 /
“ e . .I.....H.\\A ....l*.l.l- Fit, T2 T / nw,
it 0
2wy —wy « wy 2 \\ wy 2wy
) /
——
— —90°

Figure 8-8 Periodic f (¢) of Example 8-9. Figure 8-9 The magnitude and phase of ¢, from Example 8-9,
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But from the integral equ-tion, Equation 8-29, we get:

C_p= w\ J(@)e™ di (8-35) §

m:@._...ﬁamm equals
1 _
* _ % gt
et [ e

then f*(¢t) = f(¢#); that is, the time function whose Fourier series we are
interested in must be a real function. This is the condition under which the 3
magnitude and phase of ¢, are respectively even and odd functions of new,.

Also, note that since, for real f(¢), #(0) = 0, ¢, is a real number. This should
make intuitive sense because from Equation 8-30 we have ¢, = 4. This is just the
average or dc value of the given time function f(t).

Now, as we have seen, the trigonometric and the exponential Fourier series’g
are closely related. The trigonometric series very clearly displays the m?o:......
periodic f(¢) as a dc term plus a sum of sinusoids. The exponential Fourier series,
on the other hand, is a compact expression. That is its appeal, plus the fact that it%
leads very nicely into the Fourier transform which is considered in the nexty
section. A point of confusion concerning the exponential Fourier series is oftend
expressed in the question: How can a real f{t} be represented by a summation of
basis functions that are complex? The answer is that although the basis functio
are complex, they appear in complex conjugate pairs that reduce to real sines and
cosines.

The generalized Fourier series methods permit us to represent a givern
signal in terms of other signals that may be easier to handle. For periodic signals;
the trigonometric, cosinusoidal, and exponential Fourier series methods prov
useful representations that reveal the spectral content of the given signa
intuitively, the f(#) in Figure 8-8, for instance, is composed of a dc¢ term plus
nuntber of sinusoids. These functions can be generated from the ¢, plots of Figure
8-9. Fourier methods applied to periodic signals, then, provide anﬁ_.omn:ﬁm:oaw
and reveal spectral content. The generalized Fourier series methods applied to
nonperiodic signals, on the other hand, are used typically to provide alternative
representations for a given signal. They are seldom cooncerned with spectral
content. To reveal the spectral content of nonperiodic signals, we use the methods
of Fourier transform analysis. In fact, in the next section we develop the
magnitude and phase of the Fourier transform to show the spectral content of
nonperiodic signals, just as the ¢, terms stand out in the complex exponential
Fourier series to represent the spectral content of periodic signals.

Before turning to the Fourier transform, let us consider one more Fourier
series example.

EXAMPLE 8-10
Determine the complex exponential Fourier series coefficients for the £(¢)
represented in Figure 8-10. Then consider the effect of shifting f(¢} d/2
units to the right.
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fit)

L
T d
2 2 2

Figure 8-10 £ (¢) for Example 8-10.

LT o
L

Solution
i _
o ||..: t
&= .m::m iy

which becomes:

1 af A 1 mtd _
_ Aot gy - " (e imeldZ eimeddia)y
“=7 —df? ¢ T (—jnay) A )
24 o (d\ _ AdSin (neo(d/2)
T T TN T T T (nagd)2)

Now recall from Chapter 1 that Sinc (¢) = Sin wt /7.

aecﬁ__ \_Q . @q
T ol e R

Therefore

For purposes of illustration we plot | ¢, | versus nw, in Figure 8-11 in the
case where 4 = 10, T = 10, and 4 = 2. Note that the envelope of this curve
is the familiar Sinc (x) pattern. Now if we shift f(z) to the right by d/2
units, we can write:

A 1 i
Ae ™ dt = = ———— (e7/ — |
.\. ¢ T ( — jrawg) ( )
— mantdf2)
_Ae (6Tl _ ginndiDy _ gmimedd]D Ad . [end
T (—jnw,) T 2w

which is the same as c, for the unshifted function except for the phase term
s—nwyd/2. Therefore the magnitude of this new ¢, will be the same as
before and only the phase will be changed. This result, in fact, is very

1C,I = 2 mgnﬁ.‘aﬂa,\:
...00*%*00 %ﬁﬁﬂ ‘*qﬂﬁ .:Eo
=Sy —.Eomﬂc

Figure 8-11 Plot of | ¢, | versus nu, for mxms.:u_m 8-10.
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general and can be stated as follows: if f(#) < ¢,, then f(t — t,) «
e e Toproveit, let f(t — t,) = 2,.

thus
=g 16 1) e
LetA =1t —ty,dh = dt.
then .
m & nw\;\ () eI g o I,

Dvill Ser: Fourier Series

-t
.

Prove that {,} ~ {Sin nt, Cos nt, n = 1, 2, . . .} constitute an orthogon:

set of basis functions over the range 0 < ¢ < 2. :

2. ¢,(r) = $1and ¢, (1) = 4,* + d, are known to be a pair of orthonorm
basis functions on the interval 0 < ¢ < ¢;. Find d,, d,, and ¢,. Determis
e and o, where f(7) = a¢, + a6, and the function we want f(¢)
approximate is the pulse f(¢) = u(z) — u(r — 1,).

3. Expand f(t) = Sin’ 2xt Cos #f into a trigonometric Fourier series a
into a complex exponential Fourier series. Plot ¢,.

4. Determine and sketch the even and odd components of

S

e ' Cost, >0
=Q, t<0

5. Consider the periodic impulse train £(¢) = Z3___6(t + n7T). Deter
and plot the exponential Fourier series coefficients. How is ¢, in this ¢

unlike ¢, terms in previous examples?
6. Let

J{y =10, O0=<t=1
= (), l=<i=2

be a periodic function with period T = 2. Assume f(#) ~ k, + k, Sin
+ k3 Sin 3wyt. Determine k,, k,, and &;.

8-3 THE FOURIER TRANSFORM

Assume we have f(¢) in the range —d/2 < t < d/2. Outside this range f(¢) = 03
Now the complex exponential Fourier series of Equation 8-28 can be used
describe f(r) within the given range, but outside this range Equation 8-28 would;
not describe f{z)—since its true value is zero—but would instead describe &:
periodic extension of £(¢) in the range —d/2 < t < d/2. Assume that this periodic
extension has a period T and that 4 < T. As an example, a glance at the periodi¢
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J(¢) represented in Figure 8-10 might be helpful. As 7" gets larger and larger, the
given f(z) is more and more accurately represented by the right-hand side of
Equation 8-28. As T — =, Equation 8-28, in theory, exactly represents the given
S(#) which is nonzero for —d/2 < t < d/2 and equal to zero for ¢ outside this
range. For example, the f(¢) in Figure 8-10 would have only the middle pulse
remaining as T —» =. This new function, instead of being considered a periodic
function with infinite period, will be considered a nonperiodic function,

In order to formalize this development, let «, = ¢, in Equation 8-29 and
plug it into Equation 8-28 to get:

=1 » .
=3 = .\. Flt)e e gy g (8-36)

TJr

R —an

Now the spacing between harmonics, as illustrated in Figure 8-9, is just . But
wy = 2x/T. In the limit as 7 — o, w, becomes infinitesimal; call it dw. Also, nw,
becomes a continuous variable; call it «. In addition, the summation becomes an
integral. We can summarize the changes made in Equation 8-36 as T— oo:

A

wy — dew

Wy — @

__ % 4w (8-37)

Incorporating these changes in Equation 8-36, we obtain:

f@) - NP \| - \H “f(0)e dt e do (8-38)

T

The term in the brackets is called the Fourier transform of f{¢) and is indicated by
F{jw).

Thus F(jw) ~ FT{f @O} = [ f(0)e ™ di (8-39)

Then the inverse Fourier transform is written

£(6) = TFT {F (o)} = - \. ” F(jo)e™ dw (8-40)

2rd_.

Equations 8-39 and 8-40 constitute what are called Fourier transform pairs and
can be represented, like other transform pairs, as follows:

Sty = F(jw)

For the most part, corresponding to f{¢) there is a unique F{ jw) and correspond-
ing to F(jw) there is a unique f{t). To get one from the other, we use an integral
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operator. The Fourier transform transforms a time-domain function into the
frequency domain. The inverse Fourier transform transforms a frequency
domain function into the time domain. The frequency domain is indicated by w
the radian frequency, which has units of radians/second. The more “natural’
frequency domain is indicated by £, which has units of hertz. Of course, f = w/2x .4
Some texts will use the notation F( f) or F(w) to indicate the Fourier transform
These are particularly popular in texts whose focus is communication theory. Fo
our purposes, however, F(jw) will be a more useful notation because of ou
concern with the Laplace transform, F(s). Often these transforms will
identical if we let s — jw in the Laplace transform.

B e ity T VT .

EXAMPLE $-11
Determine the Fourier transform of the f(#) indicated in Figure 8-10 w

T =,
Solution
R —dat g _ [ 4t
F(jw) .\..a fye ™ dt N% Ae ™™ dt
A ) 2A
= ——{e U _ 2} _ T Gin wd - Ad Sinc (22
—jw w 2 2r

Letting 4 = 10 and 4 = 2, we plot F(jw) in Figure 8-12 as a famili
Sine (x) curve.

Now in view of the results of this example, we cannot help noticing th
there is a striking resemblance between this ( jw) and the ¢, from the previoi
example. From Example 8-10 we had ¢, — (A4d/T) Sinc (nw,d/27). Letting
nw, = @ and multiplying ¢, by T, we obtain the result of Example 8-11; that i

F{(jw) — Ad Sinc (wd/2w). This is a very general result. Imagine we have ¢, for
periodic f{¢). Let

F@) = £,

and assume f(7) is zero outside this range.

Let F (jw) be the Fourier transform of 7(f). Then ¢, and F (jw) are relate
as follows:

F(je) = Tes| mo (8-41)

Tt

20 Fljw)

™ o " pad
Iua< ._. <ua w

Figure 8-12 Plot of F{ jw) versus « for Example §-11.
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1
and €= F (o} uon, (8-42)

This procedure can make the determination of the Fourier transform a trivial
matter. However, it presupposes the existence of the corresponding complex
cxponential Fourier series coefficients. If these are not available, then we must
revert to the defining equation, Equation 8-39, or look up the result in a table of
transform pairs. We present a table subsequently.

What does this Fourier transform do? Why use it? What does it mean?
Like the Fourier series coefficients, the Fourier transform reveals the spectral
content of a signal. 1t will not normally indicate that some f(¢) contains specific
frequencies, say, at w;, w;, and w;, but rather, it shows a range of frequencies,
sy, @, < w < w,, over which f(r) contains significant spectral content. If within
this range F(jw) hits a very narrow peak, say, @ ~ w,, this often indicates the
presence of a sinusoid of that specific frequency. This sinusoid might be buried in
noise to form f (1) as some data record of “signal plus noise.” To ferret signals out
of given data records, numerous techniques have been developed from what is
called spectral estimation theory. Such studies are beyond our current scope.
However, the basics of the Fourier transform are essential to this area and to
many fields of sophisticated research in engineering and science.

The Fourier transform is generally a complex function of frequency. We
can write:

F{jw) = |F(jw}| zarg F(jw) — (8-43)

A plot of the amplitude spectrum is typically all we need to have a good idea of
the spectral content of a given signal. But in order to return from the frequency
domain to find f (), we need both magnitude and phase of F(jw). To obtain f(z),
given an analytical expression for F(jw), we do not normally use the inverse
Fourier transform equation, Equation 8-40. Usually, as with inverse Laplace
transforms, we would try to break up a given F(jw) into terms that are readily
inverse transformable, for example, by observation of simple terms that might
appear in a table of transform pairs.

EXAMPLE 8-12
Determine the Fourier transform of the following functions:

(a) f(1) = e'[u(t) — ult — )]

b £(r) = u(—1) + e7"u(t)

() £y = 0.5(t — 2))

(d) f(1) = te”"u(t)

(&) f(1) =3t — 1)

() F(1) = u(t + 1) = 2u(t) + u(t — 1)
(8) f(2) = tu(t)

Solution

. 1 i, —fwt |—.| —jw
(a) wCeuu\c. ele™ dl — - l.e?_ - 1)
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Now from Equation 8-42

1 1 1 )
ﬁaﬂmmﬂAhau_ia&e" ANHI..._?&| .—v

TV — jnw,

but 7— 1 and wy = 27/ T = 2% and e /™ = ¢ _ |

Therefore e (e)(1) = 2.718
Thus Cp = E
1 — jme=

These ¢, values are the exponential Fourier series coefficients for
periodic signal f(¢) = ¢, 0 < t < | which has a period T = 1.

(b) F(jw) = .\ O pStg=iet gy \e. " ele
1 1
- 1 -0 —
mlu.eﬁ V+L|u.e8 1)
1 | 6

— + — = - ;
S5—jo 1+4+jo (53— jw)(l + jw)
(¢) Recall from Chapter 1 that

[y =1, for —0.5<:=<05
=0, otherwise
Therefore [10.5¢t = 2)) =1, forl=¢=<3
= {}, otherwise
. . —1 .
and - Fjw) ~ .\.w le ™ dt = — (e7 — ¢77)
1 - jw
CeT (el g de~
I . SR e, A i
37 (@) (2) 5 Sin w
(d) m.Qeuﬂ,\.a“mLml}a&Hmﬁai:_m a=(-1—jw
(] at T )
1 1 1
0 —(=1) = —
nuﬁ ) @ (1 + jw)?

(&) F(jw) = [ a(t ~ tg)e dt = e~
(from the properties of the impulse function)

(f) F(jw) \H_amé& + \9_ (—1)e dt

I

1 1 .
= e R 1)
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-2 1 . . 1 A Qa2
2 e ey = i 2 Cos o} = 2SI/
jo o je jo e
. {Sin (w/2)}?
- w/2
@ FU) = [t dt =@ - Dl a= o
0 D,u Qs

m¢_...aﬁl.ﬁes_|:7:
B —w? -

which is undefined. Thus the Fourier transform of #u(#) does not exist.

The last part of Example 8-12 illustrates that the existence of the Fourier
transform, like the Fourier series, is contingent on certain conditions. In order for
f{#) to have a Fourier transform, it is sufficient that f{¢) have a finite number of
maxima, minima, and finite discontinuities in any finite interval. Most functions
of interest to engineers will satisfy these restrictions. Another sufficient condi-
tion—which is often problematic—is that (¢} be absolutely integrable;

.\' GIE R (8-44)

These sufficiency conditions for the existence of the Fourier transform, as was
the case with the Fourier series, are called Dirichlet conditions. A typical signal
encountered in engineering work, like a burst signal from a radar, will satisfy the
integrability condition because such a signal starts and stops at finite time points
and always has a finite value. However, some simple functions, like (¢}, do not
satisfy the condition of absolute integrability. Still, by indirect procedures and
assuming the existence of 8{w) in the frequency domain, Fourier transforms for
such functions can be developed. Functions like the unit step are called power
signals and are distinguished from energy signals.

Energy Signals These are functions f(¢) such that .\H\mﬁa di < =. The
integral of a function squared is often taken as a measure of the energy contained
in the signal. Energy signmals, then, are functions that represent finite energy
phenomena.

Power Signals  These are functions f(¢) such that lim,_. 1/ .\W“w U dt <
. Typical examples of these are periodic signals, d¢ wave forms, and the unit
step function. Power signals will have infinite energy but will have finite power,
whereas energy signals will have finite energy but will have zero power.

Now, in general, an energy signal will die out as t — +«, The functions
considered in Example 8-12 were all energy signals, except for the last function.
Signals with finite energy also satisfy the Dirichlet condition of absolute
integrability. Their Fourier transforms can be directly computed. The signal
Sy = tu(¢) from Example 8-12(g) is neither an energy signal nor a power signal.
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Computelim, . 1/r [ dt =Tim,_._ 1/} (*/8) = o which is not finite. If we
permit frequency-domain impulse functions, then any signal that is either a
power or an energy signal will have a Fourier transform and any signal that is
neither an energy nor a power signal will :oﬁ.rmf.nw Fourier transform. The unit
step function is not an energy signal but it is a power signal and does have a
Fourier transform.

EXAMPLE 8-13
Show that u(#) is a power signal and determine its Fourier transform.

Solution. Compute

.1 .17
lim= 7y =lim={I]
L7y dr - lim

1
Lt T\2 2

which is finite. Therefore u(r) is a power signal. Now if we decompose u(f) -
into its even and odd components, we can write: :
u(t) =$ (0 + 35,  wherefi(f) = 1 for —0 < t < o0 is gven
and L) = -1, fort <0
0, fort =0

= [, fort >0

which is an odd function. This f,(#) function is sometimes called the signum
function: f;(t) = sgn (¢). Taking the Fourier transform, we obtain;

FT{u(n)} = I[FT{ (O} + FT{ fi(O]

To get the Fourier transforms of f,(z) and f,(1), we represent these time'
functions as limiting processes:

fly=lime= (<0

= w_l_..m e, t=0
and f(n) = w_m.w —e™, t<0

=0, t=0

= Wm.._wm,.&, t>0

Then  F,(jo) u.\.sx_Sm-E dt

a—

—lim [ % pmoiurgy ¢ :ﬁ .\.s e et gy
a—0 Jy

—@m

. l 1

—lim|—— (% _ = - (e —¢&°
alaalu.eﬁm ¢ v+lblm.€ﬁm )
_dim|— b b [ im] 2@

elg — jo a4+ jw| a4’
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Figure 8-13  Plot of 2a/(a’ + o?) versus « for Example 8-13.

For a positive finite value of a, if we plot the term in brackets versus w, we
get a function like the one in Figurc 8-13. The area under this curve, from a
table of definite integrals, is 2x, independent of the value of a. As a gets
smaller and smaller, since the peak is 2/¢ at w = 0, the curve gets sharper
and sharper with 2/a — « as @ — 0. Since the area remains fixed, we end
up with an impulse of weight 2x centered at the origin in the w domain.

Fy(jw) = 27b(w)

In words, the Fourier transform of a constant is an impulse in the frequency
domain.

Now
FyGe) = [~ e dr

—Nm [0 et gy lim .\.s e e dt
o

a—0 J_ a—{)
. 1 1
Slim) L ety b (e — Y
=t a-—jw —a - jw
I -1 1
= 11umn +
0 |g — jw g+ jw
Jlim THe 722 ~_
=0 gt 4 w Jo .

The Fourier transform of the signum function is 2/j .

2
Therefore FT{u(t)} = L 2md(w) + —
2 Jw

or u(t) — wé(w) + .w.
Jw

The Fourier transform exists for many other power signals. Some of these
are easily determined by employing some of the properties of the Fourier
transform. Properties of the Fourier transform are the topic of the next section.
Before turning to that material, note the summary of Fourier transform pairs
presented in Table 8-1. Many of these could be worked out as additional
exercises. We will do number 17 as a final example in this section.
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TABLE 8-1 FOURIER TRANSFORM TABLE

it} - Flw)
1. 3(1) 1
2.1 2x(w)
.. 1
ao(w) + —
3. u(t) Jo
4, e™ult) . 1/(jw + a), ax=0
5. e~ ult) e + jorr', x>0
=2
6. |t 7
7. Sin awyt Jrlb(w + wp) — 8 (w — wg)]
8. Cos wyl x[8w — ) + e + w)]
Sin agt 1, |w| < wy
5 xt 0, | @] = ay
2 8in wT
10, I, |t <T
0, _ _: =T W
11, e 258w ~ wy)
12. 8(t — 15} e
a + jw

13. 7 Cos wyfu(t)

(e + jo)t + o

. o
14. £~ Sin agtuit) (o + jw)t + @
VT e
vl — e/
15. a’
Yo
16. e, a=0 &+
Sin (w — wg)T N Sin(w + w)T
17. Cos wytfult + T} — ult — T)] (@ — wo) (w + wg)
inwT/2|*
Il AT Sinw
18, 14 =) lti<T wT/2
0 s el =T
EXAMPLE 38-14

Determine the Fourier transform for:
f() = Cos wotful(t + T) — u(t — T)]

Solution
plot | et

F{jw) — \.sﬂ[..|1|gmu§?ﬁ + T)—u(t -~ Dtde
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1 T ity —w) — ey + w)
=5 [T g ey gy
’ -T

= M ﬁ|_lw —mu_...,f.lcw _ m.J__.,Aélev”_
2 Lm. Wy — w
1 . .
4 ”Mma T.|..i§+€ _ mk_ﬁs:s;

This can be written as:

Sin(w — w) T N Sin(ey + )T
w — Wy wy + w

F(jw) =

which is the result presented in Table 8-1. However, note that;

27
Wy = ﬂ
Therefore woT =27 and e™7 = g=7 _ |
- 1 1 —jT T
Thus F(jw) = =1 ———— [T — /7]
2 |jlwy — w)
1 . )
_ NI;__EH. _ N-__Euv
oy :
e /el _ T 1 1
B 2f Wp— W wy+ @
- SineT{RFL-wte
wp — w
2wsin 0T
or Fljw) = ————
W — Wy

which is a simplified version.

8-4 FOURIER TRANSFORM PROPERTIES

In Table 8-2 we list some of the more important Fourier transform properties.
These properties are labor-saving devices that enable us to determine Fourier
transforms or inverse Fourier transforms with a minimum of effort. Employing
these properties not only saves work but often provides significant insights into

complicated problems. We now prove and demonstrate the use of a number of
these properties.

EXAMPLE 8-15
Prove the evenness and oddness property.

Solution. First assume f(¢) is even.
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Then  F(jw) - H * f{tye~ dt - \. “f(1)(Cos wt — j Sim wr)

Now f(#) Cos wt is an even function and f(¢) Sin w? is odd. Th
integrating {rom —eo t0 +a, We get.

Fjw) =2 \a. £(2) Cos wt dt + 0

and F(jw) is even.
Now assume f(z) is odd.

Then Fjw) = .\, ™ £(1)(Cos wt — j Sin wt) dt
~ -0-j521/ in wt dt
0 E\a f() Sin @
and F(je) is odd.

EXAMPLE 8-16. . .
Prove the time shift property, then use it to determine the

transform of

@y =T —ute +3 —ult -3

Solution. We know:

Frifol - [ e di

.H:—.—OE ﬂﬁ-\.ﬁm — MOUM = I\HS\-AN _ MOVNI..F.- kﬂ
Let t— =4,  dt=dX
and .\,atﬁc — uava.,E dt = -\,s\.ﬂyumd_s@i.c ar

e [ f() e dn
Therefore g1 F(jw) < f(t — lo)

Now we know:

1
u(t) ~ mé(w) + u__ie
1 jolf2 1
Thus ult +5jeve Té{w) +%e )
ult — Na e tard(w) + P
2 Jjw
N&.s—_‘m
and BRI ITE?&& e

1/ NI..NE:_N
— le " 2 ad{w) + —
Jw

a4 FOURIER TRANSFORM PROPERTIES

E 8-2 FOURIER TRANSFORM PROPERTIES

TABL

31

Given H{#) ~ Fjw), gty -~ Gliw}

Function

Transform

Property

1 af(n) + Bgl0)

afF (jw) + BG(jw)

2. f{f) even Fljw) = 2 \g, " f(£) Cos wi dt
f(0) odd Fjw) = Jﬁ.\o‘sh: Sin wt di
3. f(t = 10) e B )
1 w
4. f (at) — Flj—
la| o
5. F(jn 2rf(—w)
6. flryeg(n) F(jw)G(ju)
|
7. fle(n) = Fljw)sG{jw}
RH
8. .qﬂb: ()" F(jw)
_ . i
9. [0 dx Z F(jw) + =F(0)3(w)
Ju
10. °f(6) (g Fio)
dw”
H. et F(jlw — wol)

12. .\.Uﬁ; ~ g dr

F(—ju)G{jw)

Linearity
Evenness and

Oddness

Time shift
Time scale

Dualivy

Time convolution

Frequency convolution

Time differentiation

Integration

Frequency differentiation

Modulation
{frequency shift)

Correlation

but m:_.e:n.uﬂnwﬁncv _ m_lk_me:u..q&AEv _ uﬂmASV
Therefore _ui_|_Q: _ Pﬁm?:m _ eIz
ju
2 1
=ZSinw-—
» in w 3

which agrees with the result of number 10 from Table 8-1 with 7 =

EXAMPLE 3.7

1
3.

The tj ich i i

Spre M.Bn scale Eo._un:w. which is sometimes known as the reciprocal

- mw 'ng property, indicates that an expansion in the time domain results
ontraction in the frequency domain and vice versa. Demonstrate this

tri

angular function shown in Figure 8-14.

fesult by determining and plotting f(101) and f(}f) where f(2) is the
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£y Pl
4 AT

T 1 T ¢ —in 1 ar @
T 3 T

Figure 8-14  Fourier transform pair for Example 8-17.

Solution. Plots of f(10f) and f(3 t) appear in Figure 8-15. From Prope
4, f(101) + &% F(j{w/10) and f(} 1) < 2F(j2w). Plots of & F(jw/1(
and 2F(j2w) appear in Figure 8-16. Note that if the time function §
contracted, then the transform will be expanded. If the time function §
expanded, then its transform will be contracted. :

EXAMPLE 8-18
(a) Prove the duality property.
(b) Use it to determine the Fourier transform of /(2) = 10/(# + 1).
(¢) Use it to determine the Fourier transform of f(7) = Sin t/t.

Solution

1 - _
@ 1) = 5= [T FGe) e do
Changing the dummy variable « to x, we obtain:
2mf(t) = [~ F(x)ye™ dx
Now replace ¢ by —w to yield:

27 f(—w) = .\.Mmca:%%

gives:
2mf(—w) = [ 7 F(jtye ™ dt = FTIF(j0)
Therefore CF(jt) < 21f(—w)
f(101) _ ey
A A
-r | T t -2T | Tt
10 10

Figure 8-15 Plots of £ (10¢) and f (3¢) for Example 8-17.

A
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By _ﬂ.m v :
140 10 277(f2e) 2AT

—207 20 w
T T

Figure 8-16  Plots of {5F( j&) and 2F{ j2w) for Example 8-17,

=

==
"

(b) We _n.zos_ that:

2
.
o+ 1
h FAR | ; 2
where fty=e and F(jw)=———
w +1
. 2
therefore F(j1) = PR — 2rf(—w) = 2we™ 7Y = 2ge el
Thus ~~|o « 10re 1l
£+ 1

{¢) We know that:
28Sin T

W

S@)=ut + T) —ut - T) — F(jo) -

Therefore F(jit) = %WMM —r 2nf(—w)

Since (=D =f(), fl-w)=wlw+T)—u(w—T)
M7=l _

N.w::.
— 2rlu(w + 1) — ulw — 1)]

Sint
t

Thus — rlu{w + 1) — ulw — 1)]

Note that this result checks with number 9 in Table 8-1.

. .>m mentioned earlier, we use F(jw) instead of F(w) or F(f) for the
curier transform. However, the F{ /) notation provides an interesting symme-
try when employed in the duality property. Let:

FU) = [T re " di (8-45)

which is just F(jw) with @ = 2xf.
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10 = [TE(e df (8-46)

Note the absence of the 2x term in the inverse Fourier transform. Using the F(f)
notation, we find that the 2 term is also absent in the statement of the duality

property: If £(¢) — F(f), then F(¢) < f(—f). From the previous example, for
instance:

2 1
N e —jul %
At il P R
But F(f) = F(jw)] guzes-
3 2
- oo and ST
N I R LR

Both versions of the duality property then will yield similar results.
differences lie primarily in scaling. .

EXAMPLE 8-1%
Prove the time convolution property and use it to determine the syste
input when the system has an impulse response

h(t) = e "Yult)
and the system output is:
y(#) = (e — e (1)

Solution
FT{f(t)*g()} = Nu\mnv*w.ﬁvml?n d
B .\s .\,s\ccwﬁ — Ne ™ dr d

Lett — A =2, then dt = dv

and F(ty*gle) \ - .\. " fg)e e dn do
_ \' “SNe N M " g()e dv
= F(jo)G(jw)

Therefore  f(2)*g(t) < F(jw)G{jw)

Now we know that

y(t) = h(1)*x(z)

The time convolution property indicates that the Fourier transform of the;
output is: ]

Y{jw) = H(jo)X(jw)

The system function:
1 . 1 1
jerio 24 YU = TS
10
(ew + 5)(Jw + 135)
10/(jo + 5)(jw + 15)  10(jw + 10)
1/(jow + 10) (jw + S)(jw + 15)

Next, using partial fraction expansion, we can write:

H(jw) =

Y{jw) =

Then X(jw) =

A B 5 N 5
jo+5 je+15 jo+S5  jw+ 15
x(£) = (S5e* + Se ' ul(r)

X(Jjw) =

Therefore

EXAMPLE 8-20
Use the frequency convolution property to verify number 13 in Table 8-1.

Solution
Si(8) = e Cos wyf u(t)
Let:
F@) =eu(t) and g(r) = Cos wyt
1

F(jw) «——— and G(jo) < 7[de — w) + 8w + @)
jw+a

Then  F(ja) - 5= F(lGe) = 5= [~ FONG(To = M) dh

¥y
T " 1
nwﬂb e (3w — A — wp) + 6(w — A + wp)) dA

1 1 i
=z +
2| w = w) + a  jlo+ @) +

Jw + «a
T Dilw — o) + al[j(w + wo) + a]
Jo +
{a + jw) + w?

Fi(jw) =

EXAMPLE 8-21
Prove the time differentiation property and use it to determine the Fourier
transform of the £(¢) in Figure 8-17.
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£

Figure 8-17 Time function used in Example 8-21.

Solution. The inverse Fourier transform is:

f() = W \‘.gs Fjw)e™ de

e dl . Wl
Then =i \ “F(jo)etdu) - \ " ek L_evmi__.,,___”

Therefore  f(¢) = joF (je) 4
Likewise, f(0) = () F (jw)
and in general:

drft s

LI o Gay o)

Now if we differentiate f(2), then differentiate again, we obtain the plog
indicated in Figure 8-18. The second derivative consists of four impulse
Impulses have very simple transforms:

S(t — ty) <+ e~
Therefore:

J@) et e g7 4 ¥ _ 2 Cos 2w — 2Cos w

But this is Ce%hﬁev.
2w —20C
Thus Fjoy ~ 2S00 20 = 2Cos0
(je)
or Fljw) = 2Cosw Imm Cos 2w
[)

This procedure is often useful: {1) Given f(r), (2) differentiate f'(¢) enoughf

F G 1 en

C T

Figure 8-18 First and second derivatives of £ (¢).

-2 -1 A—v ¢
-1
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times to yield only impulses or their derivatives, (3) transform, and (4)
divide by (jw)* where k is the number of derivatives performed.

EXAMPLE 822
Use the frequency differentiation property to determine the Fourier
transform of the following:

(a) fi(1) = Hm&MzS
b) fo(t) = te”’

(€) filty =te™™

) fi(t) = Peu(—1)
(e} f(1) = tu(r)

Solution
(a) Let:
t (2) = te *u(y).
1
- -5 ) — ——
f{) = e ult) 5t e
Then @) = T () =165 4 )2
H&E 5+ jw == +Je J
Therefore  te > u(t) « 3
{b) Let:
a . d .
te™h = tf (1)~ j — F(jw)
dw
where F(jw) = yre !
F_“w__... ov — mruamm h mlswﬁ
dx dx dw
va O 1
S B
¢ do\ 3“
3 1
—e” (. M w
Thus te " wr — g.m Jre et
2
“ll
© ¢ 1 + &
d 2y-1 2y-2
and 2l + o) = —2{] + ') 2w

w
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_ —4djw
Therefore te ___?vg
d) FTle'u(—1)} = \. ® gteiu gy
1 1
- | = 0} = ——
1 — ueﬁ )= 1 — jw

Then am: —jwy = =1 — jo)(~j) = j(1 — jw)?

a; _2

do? (I —jw)y™ = =2j(l - jw) 7 (—j) = (1 = jo)°
2
and £f(t) <~ C&N _T.A Jw) = ———
(1 — jw)
{e) Let:
740 = u(e) < 78() + %e — F( juw)
d ) . 1
ﬂm.ﬁ.\.ev = mi{w) — ;__IEM
d . s 1
Then (1) «— j—— F(jw) = jmd(w) — — -
dw W

Note that Example 8-22(e) presents a dilemma. Part (g) in Examplé §-
asked for the Fourier transform directly. The conclusion there was that
{tu(£)} does not exist. The reason was that tu(r) was neither an energy signal
whose Fourier transforms are not problematic, nor a power signal, whose Fouri¢
transforms are not problematic as long as we allow &(w) functions to exist in t
frequency domain. Note the result for Example 8-22(e). F{ jw) contains :
unit-doublet. From generalized function theory, which is beyond the scope of th#
book, it can be shown that if £ (#) is a power signal and we let w.“ev exist in th
frequency domain, then F(jw) can be developed. Likewise, if f (f) is a powe
signal and we let §{w) exist, then F( jw) can be developed, and so on. Due to th
abstract nature of these issues, we will not consider them further. We tur
instead to an examination of the frequency shift or modulation property. This
property proves to be very useful in a number of different areas of communicas}
tion theory.

EXAMPLE 8-23
Use the modulation property to determine the Fourier transform of the:
following functions;

(@) fi(t) = f (1) Cos w,t
By F£.08Y = £y [in e f

8-4 FOURIER TRANSFORM PROPERTIES wdw
13t/ Ly ()]
ai2 r
0.5 ”
_ : | |
Z6 —5—4 .— 456 w ~203—200 —197 — 197 200 203 w
Figure 8-19  Plot of magnitudes of F; and F, from Example 8-23.
Sin ¢ Sin 5t
() i) = ——
!
5in 3z Cos 200t
@ filt) = —
(e) plot |[F;(jw)| and |F.(jw)
Solution
) : )
() ‘DQV H.\.Qv Cos w,t .IE* ot g NJE«J
L FUe — o) + Fljle + @)
2
D, . _
(b) S(1) = f(2) Sin w1 u% [o /o _ gmivat)
f.vm.m..;e — o)) - F(jle + «.))
2j
Sinte¥ — e~ Sin ¢
(€) 50 - |ie. but St e ]
— @)/2) - + w)/2
Therefare  Fy{ jw) = _I_Qe @:)/2) 5 [T(w + «.)/2)
e = 5)/2) - Mg + 5)/2)
2f
20051 - 2001 .
@ JIOTLLY N WL
- Noo
Thus FCEVH.M;_I_ r%g LT et 200 w +

(e) Plots of | Fy( jw)| and | F,( jw)} appear in Figure 8-19.

EXAMPLE 8-24
Use the modulation property to determine the Fourier transform of an
arbitrary periodic f(r) which is represented as a complex exponential
Eritier eoriea
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EXAMPLE 8-25
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Solution. Let:

S =3 cem

A=—=

Each of the terms in the summation is a constant multiplied by a complex §
exponential. The Fourier transform of a constant is an impulse; that is:

FTie,} = 2c,8(w)

Therefore the Fourier transform of f (¢) is a summation of impulses, each of
which is shifted in frequency due to the complex exponential terms; that is

FT{f ()} = 2 3~ c,6(0 — nuwn)

= —
The Fourier transform of a Fourier series consists of a sequence o
impulses. Each impulse is weighted by 2m¢, and all impulses are separated
from each other by w,. Although the term «w, is similar to the period of the;
transform, the Fourier transform is not a periodic function. Even thoug
the impulses are all separated by the same amount, their weights are al
different. The best way to understand the relationship between the Fourie
series and the Fourier transform is to imagine that the line spectra in th
Fourier series are replaced by infinite lines or impulses in the Fouri
transform. Each Fourier transform impulse is weighted with the corr
sponding complex expenential Fourier series coefficient ¢, (times 2x).

Demonstrate the correlation property.
Solution. The property states that the Fourier transform of;

\. “fh — g\ dn s the product  F(—jw) G jo)

This of course is very similar to the convolution property. The integr
expression is written £ (r) ®© g(r) analogous to the convolution notation. I
the integral, if we let A — 1 ~ p, then the integral becomes:

S r ey ax

The Fourier transform of this integral then is:

Lo [ rgyer drax

but dt = —dp, so we obtain:
7 [ 0ee P (—dp) ax

The minus sign with dp reverses the limits on the second integral m:& we 4
can write: .

Sore| [T ge ™ anldp - F(—jw) G (jw)
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Now before concluding this section on properties of the Fourier transform,
we consider Parseval’s theorem. In the Fourier series discussion we discussed
what was called Parseval’s relation. This equation related the energy contained in
a finite time interval of a function to the Fourier series coefficients of that
function. Parseval’s theorem is similar. Consider a real energy signal £ (¢) with
the Fourier transform F( jw). Let the energy contained in f (#) be:

€ = \. * F21) dt (8-47)

Since f () = (1/2w) .\“ " F( jw)e™ dwis the inverse Fourier transform of F( jw),
we can write:

* 1 - ! ol
- [Tro i [T PG dotdr (8-48)
which can be further expressed as:
1
E -
6 - Ma.\, F(jw) .\ fe™ dt)dw (8-49)

But note that the term in parentheses here is just F{—jw), and since we are
assuming that f(#) is a real function of time, we know that F(—jw) = F*( jw).
Also, we know for any complex function that FF* — | F|?. Thus we have:

i

6 -5 [T FUF(—jo) do -

o IR de (8:50)

Relating time- and frequency-domain integrals, we can write Parseval's theo-
rem:

[orwa=— [*1FGof do (8-51)
The term | F|? is called the energy spectral density and indicates a distribution of
energy over a spectral band. Forinstance, if F{ jw) is fairly constant over a small
band Aw = w, — w,, then the energy contained in that band is approximately
{F|?Aw/2x. This result can be obtained from Equation 8-51 if we let F be
constant and integrate from w, 10 w, instead of from —cw« to +w«. Then we have
& ~ | F|*Aw/ 27 as the energy contained in the spectral band w, < @ =< w,. We can
write | F|* = 276 /Aw. Dividing & by Aw gives a kind of energy density: We have
an amount of energy per dw. This is the motivation for calling the term | F|* the
cnergy spectral density. Note that when we talk about continuous energy spectral
densities or continuous Fourier transforms, the energy over a band of frequen-
Cles—never the energy contained in a single frequency—is of interest.

With regard to linear systems, the Parseval theorem can be useful. If £ (¢)
= F( jw) is the input, g{¢} < G( jw) is the output, and H( jw) is the system
transfer function, then the output energy spectral density is:

1G(jw)|? = |F(jo) | H( jw)|? (8-52)
The term | H( jw)|? is called the energy transfer function. It relates the input
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energy spectral density to the output energy spectral density. Because of the
magnitude-squared nature of these terms, the output and the input energy
spectral densities are both independent of any phase variations that might be
present.

Another use for Parseval’s theorem is in what is called energy localization,
Assume for some given f(¢) that the left-hand side of Equation 8-51 can be
computed. This yields the total energy contained in the signal. Now on the
right-hand side of Equation 8-51, note first that | F|? is an even function of w.
Thus we can write:

. 1 ro
\..K&S &nm.ﬁ |F(jw)|* dw (8-53)%

Often the energy spectrum |F|* will be concentrated over a finite band of
frequencies. A typical question in this area is to determine such a frequency band
within which a certain percentage of the total energy will be localized. .

EXAMPLE 8-26

Determine a frequency band (0, w.) over which one half the energy inj
F{8) = e "u(#) will be localized. .

Solution. The energy in f (1) is:

mu\.uxnean.ﬁmé&no.m

Now, from Equation 8-53, we can write:
1 I po
505 =~ [“1F do

equating one half the energy to the integral with finite upper limit. We

know va.n
F(ja) = —
@ l + jw
Thus |F|? = L
4o
1 e 1 ] -1 [
and o.um|a.\o. s do = — {Tan™" w3
or 0.25r = Tan"' @, — Tan™' 0 = Tan"' w,
therefore w, = Tan (w/4) = 1 rad/s

The discussion on Parseval’s theorem provides a transition between the’
properties and the applications of the Fourier transform. The result postulated in
Parseval’s theorem employs the idea of signal energy and follows directly from
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the definitions of the Fourier transform and the inverse Fourier transform. Using
Parseval’s theorem in the energy localization problem introduces Fourier trans-
form applications. Applications of the Fourier transform span a wide variety of
disciplines. Some of these applications will be dealt with in Section 8.6.

At this point, we pause in order to consolidate our results, We studied the
Fourier series and from it developed the Fourier transform. A number of
properties of the Fourier transform were considered, not only as an aid to obtain
Fourier transform functiens, but also as a means to gain deeper insights into the
essence of the Fourier transform. Even further appreciation can be obtained by
comparing the Fourier transform to the Laplace transform, which has already
been discussed in Chapters 4 and 5. A basic understanding of the Laplace
transform is presupposed. The next short section deals with the relationship
between the Fourier and Laplace transforms.

8-5 THE FOURIER TRANSFORM AND THE
LAPLACE TRANSFORM: A COMPARISON

From a cursory glance at the two transforms we might conclude that F( jw) is
just F(s) with s replaced by jw. This, however, is not always the case. It is so if

f{y=0,71<0,and ..\ce | £ ()| dt < o that is, if £ (¢) is absolutely integrable.

EXAMPLE 8-27
Determine F( jw) from F(s) for:

(@) £i() = e %u(n)
(b} £,(¢) = e Cos 10tu(s)
{©) f3(8) = ult) — u(t - 10)

Solution

1
(a) Fi(s) = PaTH

Since £)(?) is zero for t < 0 and f|(¢) is absolutely integrable:

Fojw) = —
1 Jw) 10 + jo
b Fos) = —0 > — 0, _
v ) =G Y T o oo
_ N
(c) m...u?v.ull._.mu_a. _m.u:pcur._ll .Pml&e
5 s jo  je



