Then nﬁzszkC_;E: ”

Pars
= x(0)y(n) + x(1}y(n ~ 1)
+ x(y(n — 2} + x(3)p{n — 3)
=x(Ny(n = 1) +x@)p(n - 3) =y - 1) + yn 1
20) =p{=1) + p(=3) =1, z2(D)=p0) + y(-2) - O
z(2) =y +y(=-H =1, z2(3)=x(2) +y(0) =0
z{n) = [1,0,1,0]
Now for aperiodic convolution we must extend each function x(#) and v.(n)
by adding zero values in order to get no overlap in the intervals outside the

given values. Imagine that the sequences are of length N/2, instead ol N,
Then form the sequences:

x(0), x(1),...,.x %I_ ,0,...,0

N

pn) =y y(1),... x5~ 1].06,....0

x(n)

which are of length V. To both x(#) and y(n) we simply append N/2 zeros,
Then 2{n) = x(n)*P{n) is a periodic sequence of length N. Also, DI'T
[2(n)] = DFT [&(n)*j(n)] — X (k)Y (k), where X (k) and Y (k) arc the
DFTs of k(#), P(n). All these functions, again, are periedic with period N,
The periodic nature of these functions follows from the DFT and [DI'T
mechanisms. But by appending these zeros, we get a *‘true™ convolutivn,
that is, when the time sequences are shifted in the convolution operatio,
we get none of the overlap that periodic replication imposes. Let:

x{n) =[0,1,0,1],y(n) = [0,0,0,1] and N =38,

Then () — [0, 1,0, 1,0,0,0,0], #(n) = {0,0,0,1,0,0,0,0]
T

> x(p)pin — p)

p=0

20)p(m) + X(Dy(n — 1) + X(2)p(n - 2)

. + X(3NPn - 3) + A D P — 4 + X(5)pn-5)

+ X(6)p(n — 6) + x(Nptn = T7)

yin—1) +3(n - 3)

v HO) =P(-1}+ P(=3)=0, 1) =7(0) +§(-2)=0
22y =y + (-1 =0, 23 =32+)(0)=0
24) =J + Py =1, 25 =704) +32)=0

and 2(n)

A =P8 -1, 2D - MO P(4Yy-0
) = 0,0,0,0,1,0,1,0]

Note how this is r.c:zmn_mqm.c_w different from z(n).
We avoid convolution, of course, by doing multiplication of the DFTs.

To obtain z(n), get Z(k) = X' (k) Y (k) and invert.

3

X(k) = >_x(mW™ = x(0) + x(1)Ww*

+xX(WHF L xQYWH W= —j
= (=) + (=t
X0 =2, X(1)=90, X(I)=-2, X(3)=0,
Xik)=i2,0,-2,0]
Also Y(kY = y(3) W — (—j)*
Y(0) =1, Y()—j Y2)=-1, Y3) =}
Y(ky = [1, /. =1, —J]

I

X 3

Z{k)=[2,0,2,0] and z(n)=4{> Z{K)yw ™
k-0

z(n) =L [2 4+ 2W ¥ —z(0) = 1,

2(1) =0, z(2)=1, z(3) =0

z{n) = [1,0,1,0]
which checks with the previous result. Finally:
Z) = X(k)YY(k)

7
X(k) =Y x(m)yW™ = W5+ W* and W=e"*

n={)

since N=8 .

X(0) =2, X(1) = —jv¥2. X(Q2)=0, X(3)=—j\2,

X(4) = —2, X(5)=jv2 X(6)=0. X(7)=j2
Therefore X(k) = [2, —jv2,0, —jv2, =2, 72, 0,42}
And Yik) = W*

) . .

YO =1, PO -5 P)=

e PR A S

(VH)\M » = T
) I BN el
Y{5) - R Y(6) - —j, Y{(7)= 7

372

9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSFORM

A —1-j 1—j 1+j j—1
Thus Y) =1, 72) ,\M,LT J\M,Ig. NG
Therefore Y(k)X(k) — Z(k) = [2,j - 1,0, =1 — j,
M'.\|—woe|_|._
. Il |
NgumMN:ﬁ:ﬁ -3 2
. Y- DWW (-l - W
F2W T (J - DWW 4 (=1 = W)
and mﬁovuw_m+c.l D+(=1-4)y
+2+(j-D+(-1-/]=0
1 1+ L1+))
w:wa:-:%i-T:#ﬁ
Ny BN r) N
AT ARY. N B (1-pn=0
) =g G D 1D 2
+ (= Dj+ (=1 = j¥-)1 -0
1 —1 4+
w@nmr::%
+TT:|:M,M:+MT:
: (L=-5n L=1=-0]
R e e T B
wﬁcuw_r:::T:+T_|\.:|:
+2D+ - DD+ (-1 =H(=-D)] =1
! . Qe
wavumrcssﬁﬁ:
)
+A|_I.~u#+wﬁl:
(1)) (i n

[i) 0

2

. 9-4 THE FAST FOURIER TRANSFORM ar3

2H6) =24 (D) + (~1 =)0
PN+ G DY 4 (1 -)] = 1
o a-p
NQVHWN+C\C||,.\M
NS,
+T_|bll[,m .+NT:
(=1 NIET

0

+:f:#+A_\b 7

Therefore Z(n) = 10,0,0,0,1,0,1,0]

which checks with the previous result.

Since most of the other properties are analogous 1o the continuous Fourier
transform properties, we end our discussion here. Some other properties will be
dealit with as problems at the end of the chapter. We turn now to consider the fast
yFourier transform. .

9-4 THE FAST FOURIER TRANSFORM

'The fast Fourier transform (FFT) is an algorithm or a procedure with which the
discrete Fourier transform can be computed using far fewer calculations. For
many signal processing operations, computational requirements using the FFT
¢an be reduced considerably, Although the FFT has had a long and interesting
history (see Brigham, 1974, pp. 8-9), it was a paper by Cooley and Tukey (1965)
that really put the FFT on the map. Since their famous work, which heralded a
major technological breakthrough, there have been hundreds of papers written
on the FFT. Fields as diverse as seismology, radar, astronomy, linear systems,
optics, quantum physics, neurology, and communications have benefited from
the FFT, mainly because the DFT requires N? complex multiply and add
operations, whereas the FFT needs only aproximately N/2 log, IV operations. For

Number of 1 1024
multiplications 1
X 1000 Drirect DFT calculation

453512 DFT via FFT

I
1 1

S0 Lont N

Figure 9-11 o von Tat dicect DE D andd DE L v BL

374 9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSFORM

low values of N these numbers are not very different, but for large & the
difference becomes dramatic. {See Figure 9-11.)

Numerous FFT algorithms and variations on these algorithms are pre
sented in Brigham's (1974) book and, more recently, at a more advanced level, in
Elliott and Rao’s (1982) work, both containing very extensive bibliographics.
OQur approach to the FFT will be limited to an introduction. We will conside
what are called power-of-2 FFT algorithms and focus on the two types
Decimation-in-time algorithms and decimation-in-frequency algorithms,

-
V

9-4-1 The Decimation-in-Time Algorithm

Assume that the number of points in the data sequence is a power of 2: N = 2’
where r is a positive integer. The number of points N will be repeatedly divided by
2 in order to facilitate the algorithm. Algorithms for arbitrary N values have
been developed and are even more efficient than power-of-2 algorithms; however,
they are more complicated and will not be explored here.

Let us write F(k) as follows:

N_1
F(Ry =2 fW™ k-0,1,...,N—1
n=0
N-1 N—1
=2 SWt Y S
n=0 n=0
even n odd » (9-30)
Then this expression can be written as:
Nf2-1 Ni2-1
Flk)y= 2 fimW* 1 > f(m)yw*orv (9-31)
n-0 r=0

where £, (n) = f(2n) and f3(n) = f(2n + 1) are, respectively, the even and odd
components in f{n), the original sequence to be transformed. Now let:

Nj2-1 N2
Fi(k) = 3 Amyw? and Fy(k) =) fi(n)w
n=0 n=0
and we can write:
F(k) = F (k) + W*Fy(k) (9-30)

which cxpresses the original NV point DFT as a summation of two /V/2 poinl
DFTs with the second multiplied by W* The DFT F(k) has N points £ (0},
F(1),...,F(N —). Imagine breaking this sequence of NV points into two sets or
sequences, the first being F(0), F(1), ..., F(N/2 — 1) and the second being
F(NJ/2),F(N/2 +1),...,F(N — 1). At this point in the development, the FI'T
advantage comes clearly 1o light. It can be shown that:

FlE Q - KKy WRER) {4 31)

“

' 9-4 THE FAST FOURIER TRANSFORM 375

Comparing Equations 9-30 and 9-31, we obscrve that, except for a minus sign,
their right-hand sides are equal. The same information used in Equation 9-30 to
calculate F(k) fork =0,...,N/2 - 1 can be used in Equation 9-31 tocalculate
F(kyfork =N/2, N/2 + 1,.... N — |, where the latter calculation is F (&
+ N/2Yfork =0.1,...,N/2 — 1, Varying & only over the first half of its range
k=0,1,...,N/2 — |, and using Equations 9-30 and 9-31, we can calculate all
f ¥ points of F (k).

EXAMPLE 9%-10
Show how Equation 9-31 follows from Equation 9-30.

Solution. From mnnm:o: 9-30 we can write F(k + N/2) = Fi(k + N/2}
+ WHANEE (k + N/2).

Ni2-1 Ni-
But \u_ﬁ.—n + E\Nv = M .__Akv—‘.—\.ma;+>c_uv - M ..\._c,_w‘\w\m.ma:\.._Z
n-{l n-g
nNj2-1
- Y fimW™ = F, (k)
n~il
since W o SARINNAN) _ it
Likewise:
!
N
F. ,» + 5= Fi{k)
Also,

ﬂﬂ\ai,\.\m _ —\-\k:_.(.\u - —..—\»N\L.W - :\.*
Substituting, we get Equation 9-31.

Now the operations involved in Equations 9-30 and 9-31 can be expressed
in a convenient signal flow representation called a “butterfly,” which is
fllustrated in Figure 9-12. This butterfly arrangement can be expanded gradually
backward to form a *‘cocoon” type lattice. Similarly, each of F, (k) and F,(k)
can be treated as was F (k). Since £, (k) and F;(k) are V/2 point sequences, we
will break each of these V/2 point sequences up into two /4 point sequences:

N
F(k) = F(k) + WHE (L), »uo._..:_M|~ (9-32)
N
F, »+M = Fy(k)y — W*F,(k), ».no._,:..w| 1 (9-33)
+
¥ o Fk)
Pk o FUAt)

Figure 9-12 Buttendly computatunm s

376

Then the N/4-point sequences F;(k) and F (k) can be split in two, and so on,
until we have only 1-point sequences remaining. An 8-point FFT can be used 1o
illustrate this procedure.

9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSFORM

EXAMPLE 9-11
Construct an 8-point decimation-in-time (DIT) FFT butterfly signal flow

representation.

Solution

F(k) = Fi(k) + WF,(k), K

N
N.._\ﬁ+|N.

F{k) is an 8-point DFT. F,(k) and F,(k) are bath 4-point DFTs, each of
which can be separately decomposed:

0,1,2,3

= Fi(k) — W*Fy(k), k-0,1,2,3

Fi(k) = F5(k) + WEF(k), k=0,1

F »+W = F(k) — W*F,(k), k=01

and Fy(k) = F(k) + WHF(k), k=01
Flk + W — Fs(k) — WHF(k), k=0,1

Now Fi,(k), Fy(k), Fs(k), F,(k) are each 2-point DFTs that can be
expressed as sums and differences of the original data.

Nfa-1
M -\.uﬁkv:\ak:u

n=0
Nid-1

> flmyw

nal¥

Because F; and F, both relate to F,, the time functions f; and f; both relate
to f,. Recall that f {n) = f(2n). In a similar manner:
Nja—

Fo(k) = Mo Selmyw

Fi(k) where f3(n) = fi(2n) = f(4n)

Fy(k)

where fi(n) = fi(2n + 1) = f(d4n + 2)

Nia-1
Fo(k) = 2 fi(myw*,
n=0
where f5(n) = f,(2n) = f(4n + 1)
Sfelny = Q21 + 1) = f(dn + 3)

Now if we carry out the expressions for F3, F,, F;, and F,, we obtain:

Fy(k) = L0 + ()W, fork =0,1
and Wé—e "« 1

and

Fi(k) = fl@W° + fu(yw™
Fy(k) Aot e
Folh) By fnw™

Also

9-4 THE FAST FOURIER TRANSFORM 377
Thus Fi(0) = f(0) + f(4),
(1) = £(0) — f(4),
Fs(0) =f(1) + f(5), Fe(0) = f(3) + f(7)
Fs() =f(1) = f(5), F1) =f(3) - f(7)

which can be viewed as four butterfly arrangements with gains of 1.0 and
—1.0. The total 8-point FFT can be arranged as in Figure 9-13. Note that
the F, and F, equations can take the form:

Fy(0) = f(2) + f(6)
Fi(l) = f(2) — f(6)

F(0) = Fy(0) + W°F,(0)
Fi(1) = Fi(1) + WE,(1), where W° = |
and W2 =e " = —j
Fi(2) = F,(0) — W°F,(0)
Fi(3) = Fy(1) = W2F,(1)
and F5(0) = Fi(0) + WOF, (D)
Fy(1) = Fs(1) + W2F,(1)
Fy(2) = F5(0) — WOF(0)
Fy(3) = Fs(1) — WPF(1)
And, finally, the F equations take the form:
F(0) = F,(0) + W'F,(0) wi=1
F(l) = Fi(1) + W'F,(1) w'=1/2-j1/42
F(2) = F(2) + W'F,(2) wi- —j
F3)=F0)+ WFE3) W =-1/V2-j1/V2
and F(4) = F,(0) — WOE,(0)
F(5) = Fi(1) — W'F,(1)
F(6) = F,(2) - W'F,(2)
F(7) = F,3) - W’F,(3)

The FFT computations start from the given time samples and proceed
through r stages, where 2° = N. In Example 9-11 with ¥ = 8, we had three
butterfly stages. A 16-point FFT would require four butterfly stages; a 256-point
FF'T wouid need eight butterfly stages, and so on. After completion of each stage
of computation, the results can be stored in the registers that held the previous
stage’s information. The inputs to each butterfty stage are used only once, which
saves a ot of space in the computer’s memory.

There is an mteresting symmetry that oceurs in the arrange
input dinti in these dec wi i hme PET algonthms, Consider ¢he mpat ondes
for the ¥ ponat FET of the previous example: fOO), £(4), L0, FLO0F01), FUS)

378 9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSEORM
+ (0 +
£(0) o—» g ——— F{Q)
+ +
) /\q;: / \
F(4) o - tmo F(1)
| /< +
Fal0) ” “ H H+
D) o —— y Yo ki
+ o = Fy2) +
, +FAD) + .
£(6) & > N - io Fo
T oW F03) +
1) o é >3 F(@)
H(5) o= - \gﬁqa,
+ ! -
1(3) o—m — o ro——d " F6)
T WO >@§ \ -
+ w? E}
(o o - Hc... 4 a0 F(T)
Fy(1) F3(3) -

- Figure 9-13 Butterfly signal flow graph for 8-point DIT FFT (all paths have unity gam
unless otherwise indicated).

f(3),7(7). This is the order in which the first butterfly stage calls for the duty 1t
appears rather jumbled, the numbers in parentheses are not data values bt
locations of data in the data array. These locations are given addresses
computer memory. If we indicate these addresses in binary form, we can nuihe

the following correspondences:

» (MW}
[(1}

I
eh

8-4 THE FAST FOQURIER TRANSFGRM 379
f(2) — 010
Sy —110
Sy — oo
f{3) — 101
F(3) — 011
N — 111

 In a typical signal processing situation, the data are pathered in a natural order,

for mxmBEa.HAS,.\A_v,\ANV.\Er\?v_\av,\?v,\,AJ. For this natural order

we can make the following correspondences:

£(0) — 000"
F(1) — 001
1(2)— o010
F(3)—011
7(4) - 100
F(5) — 101
F(6)— 110
T — 111

iNow send the numbers in this data array reversed to the addresses indicated by
the _u:_m.Q numbers. This technique of rearrangement is called binary reversal.
After this reversal the data are in the proper order for the FFT processing.

EXAMPLE 9-12

Using the 8-point FFT for f(n) < 1,2 = 0,...,7, determine F,, F,, F;, F,,
then F\, F, and, finally, F(k}fork=0,...,7.
Solution
F3(0) =2 F(0)=2 Fi(0) =2 Fo(0) =2
F() =0 F(1)=0 F(1)=0 F(l)=0
then F(0)=4 and F,(0) -4
F(l)=0 F(l)=0
Fi(2)=0 F,()=0
Fi(3)=0 F,(3)=0
and F(0)=28
F(I) = F(2) = F(3) =F (4) =F(5) =F@®)=F(T)=0

The DFT pair f(n) <~ F (k) represents a mapping between N points in the
discrete time domain and N points in the discrete frequency domain. But recali
that in the DFT development, the actual functions f(n) and F(k) were two
periodic discrete sequences, Tracing that development backward, we arrive it the
aperiodic discrete time sequence f{(#) and the periodic continuous frequency
function #.(8). Stepping back further sill, through the duality property, we
nrrive at the periodic ¢ wous e function £, (03 and the apenodue i ele
frequency | on Cy o hight of tus tace we canexplain the s
D02 by viewing £(r) as i pertodically renliconted ol o

shdvandi d' 2 84Y sashe iaabe

380 9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSFORM
becames a constant: f{f) = 1 for all z. Such a function has a frequency domain

¢, as a single function ¢, with all ¢, = O for n £ 0.

EXAMPLE 9-13
Using the 8-point FFT for f(n) = {1,1,1,1,0,0, 0, 0], determine F(k) for
k=0,....7)

Solution
o) =1 F,(0)

I
-_—

F(0)=1 Ff0) =1 .

F(0)=2 Fy0)=2>

Fiy=1 F{l)=1 F(I)=1 F(l)=1
F(2)=0 F(2)=0 F(D=1-j FI)=1-]

WO _ 1, W' — /42— 1742, wio —j,
Wia /Y2 —j1JV2, FQB) =14+, F:(3) =1+

F(0) — 4, E:_J‘.wi. F(2) -0,
F(3) =1 +j(1 —2/v2)

2

4
I

F{4) =0, F(5 F(6) =0,

_+g.Qm|H.
F(T) =1+ + 2/

Plotting the magnitude of these terms, we get a plot similar to that in the
following sketch.

IF (&N

=}
b
b

This is the familiar Sin x/x pattern that we had with the Fourier series
coefficients when the time function was a pulse. Interestingly, if we
determined F({ k) for f(n) = [0, 0,1, 1, 1, 1, 0, 0], we would get the same
magnitude plot as shown here, although the phase of the £(k) terms would
change. This is explained by the time shift property of the DFT.

9-4-2 The inverse FFT

I we return to the previous example and imapine that the complex conjugate ol
the autputs are inputs to an FET alporithim, we will obtiun some interesning

9-4 THE FAST FOURIER TRANSFORM 381
results. We can write F* as an array:

4

I+ j(2/v2 + 1)
0

I —j(1 —2/+2)
.
1—j2/v2 - 1),
0

[1 — (1 + 2/42)

Let these function as the f{n) inputs to our 8-point FFT; thatis, £(0) = 4, /(1) =
L 1+ j(2/ V2 + 1), and so on. Tracing through the butterflics in the flow graph of
. Figure 9-13, we get as outputs the following array:

8

oo o o o0 oo oo

Notice that if we divide this array by N = 8, we have as outputs of the FFT the
array that was previously the inputs; that is, f{n) = [1, 1,1, 1,0, 0, 0, 0]. In this
way the FFT algorithm can function as an inverse FFT (IFFT) algorithm. To be
totally general, we would have to take the complex conjugate of the output. But
this is seldom necessary since f(n) is typically a real sequence of data points.

To formalize this result, take the complex conjugate of both sides of
Equation 9-25

.— N-1|
.\,*A.}.v I M mﬂA\Av:\\wa *
2»10
1 N=-1
-5 > Frk)yw* (9-34)
=0
Now change the & 10 nund the n 1o &:
I3t
LRI BV T (0 19)

w0

382 9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSFORM . -4 THE FAST FOURIER TRANSFORM 383
Compare this summation to the DFT summation for F(k) in Equation 9-24 N/21
Except for the N facter, they are the same if F*(n) replaces f{n). : F2k+ 1) = > fitmyw (9-44)
=0
N-1} .
Then flk) = 1 S F*(mywrn) {9- 1) 1 both of E_:.o: are good for k = 0,1,..., N/2 — 1. Then we can write ¢ach of
NS 1 Enmm equations as two summations by dividing the intervaln = 0 to ¥/2 — 1 into
two intervals n = 0 to V/4 — land n = N/4 10 NV/2 - |. We demonstrate this

Thus to use the FFT to calculate the IFFT, that is, to determine the time A !
sequence using FFT algorithms: - procedure, as before, with an 8-point FFT.
' EXAMPLE 9-14
1. Apply the complex conjugate of the transform array to the FFT input

2. Multiply the FFT outputs by /. Solution

3. Take the complex conjugate (if necessary) of the output array. ‘ F(2k) = Mﬂh?& :\,L; k=0.1,2,3
n=-0 T
3
F(2k + 1) =3 fillmw* k=0,1,2,3
a=0

9-4-3 The Decimation-in-Frequency Algorithm

Let us write ¥ (k) as follows: Now write F(2k) = Z)_, fi(mW*™ + Z)_, fL (n) W™

Nj2-1

N
F(k) = > fimyw™ 4+ 3 flmyw™, k=0,1,...,N=1 (931

He=l) n-Nj2

1 3
and FQk+ 1) =2 AW™ 1+ 5 AOnw
a~0 n=2

where L) =f) + f(n+4), f2(n) = [f(n) - f(n + 4)]W"

Now we can write the second summation in F(2k), F(2k + 1) as

If we change the index of summaltion in the second term, we can write:

Nj2-1 N
F(k) - M SmW™ & fln + 5 i ins MK summations from n = 0to n = 1 so that:
n=0 [
]
but WNDE _ gtk _ (_)k (9-3%) F2k) = 2 AW & fi(n +) WH (01,23
rn=0
50 we have: !
- N F(2k +1) =D fi (M)W & fy{n + 2) WA Dk, k-0,1,2,3
FOO = Y (fy+ fln e S)|w fork=0,2,46,... (-9 "
— 2 Now define:
Nj2-1 .
Fio = 3 (fo0 —flns S)we fork—13,57,.. (9-40) Sny = file) + iln 4 2)
= Saln) = [fi(n) ~ filn +)™
It is f t ti “decimation-in-fi " idea arises. We
t is from these equations that the “decimation-in-frequency” idea arises. We and fs(m) = () + foilr + 2)

note that the frequency funclion F (k) is broken up into even and wdid
components. In the “decimation-in-time”” FFT considered earlier, recall that the
time function f(n) was broken up into even and odd

If we now make the definitions:

So(n) = [fo(n) — folre + 2)]W7"

and we can write;

1

fim) = f(m) + fln v W (9-41) F(ak) = WE&:\; =S(0) + AHWH k-0,
L

Fl4k +2) - Wk _ 4k _

San) = \E|\a+w we (94N ﬁ v WEE JO) + AOWS, k= 0.1
- 1

then we can writc: Fidk 4 1) 2 W™ L0y b Sl Aol
L . .

FOAY D ™ (o FCUC 8 Y ™ ooy o™ ko

n wo il

384 9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSEONM -4 THE FAST FOURIER TRANSFORM 385

Thus F(0) = /s(0) ~ f,(1) S U L SO LN
F() = [0) + LW, wio _)
= /4(0) - fi(1)
F(2) = £(0) + £i(1) 101y 0— S —
F(6) = f1(0) — £i(1)
F(1) = /1(0) + f(1) | . e L .
F(5) = 5(0) — f5(1) g A -
F(3) = fe(0) + fe(1)
F(7) = £(0) — fi(1) fo—r—g So—r 4 >
and L) = A0 + £ L) =/() + A3) _
0) - 10— f2)w, T
A = LAY - WL W @ e BTN T AT F)
KO = L) + £ f(1) = £(1) + £(3) <
fi@) = LAO) — LOIW°, £ = [A(1) - /(3|4 (5) 0—nr 3, Rl ro s X resh
and Si0) = 110 + f(4) i e
S = 1(1) + £(5) , R . o
6) 0—» g - > —— £(3)
Si(2) = f(2) + f(6) , /22 we
£i3) =103 + £(7)
+ W + w?
and £0) = L/ - fnw° T T T e
L) =) - f5w n~_.=.a e.w: .wc.ﬂpmn.nw m”_mv:m_ flow graph for 8-point DIF FFT (all paths have unily gain
nless otherwise indicated).
5(2) = [f(2) - f(6)|W?
L) =13 — (w3 Solution
The total 8-point DIF FFT can be arranged as in Figure 9-14. POR) _W\T: — W i _ P — m\kw
It is interesting to compare the DIT and DIF algorithms. The DI =0 =0 L-w
algorithm has an advantage in that the data are input in their natural ordes, but BN _ p-smk _

whereas the DIT algorithm requires that the data be put in the proper order loy

processing by performing a binary reversal. However, the DIF algorithm has i

Therefore the numerator - 0 and F{k) = 0. Except when? If & = 0, we

outputs in a jumbled order. These values can also be put in their natural order by get:
binary reversal, if so desired. .
N N
o YT N K
EXAMPLE 9-15 Wﬂ W t
Determine the BT, then the DI TET, Tor the £{) used i EEHTH IR .)
Lheretme FUAY R 0,0.0,0,0,0, 0}

Compnre the resulis

' 8-5 APPLICATION OF THE FFT 387

Y(k) = X{(k)H(k)Ylork =0,...,N — 1 and y(n) = IDFT[¥(k)]. where the
inverse discrete Fourier transform can also be computed with the FFT

386 9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSFOUM

Now tracing through the DIF FFT algorithm, we obtain:

MOy =2 £H{0)=0 f£(0y=4 S0)=0 algorithm.
fH{ly=2 M =0 £y =4 Sy =0 There is another useful procedure here that will save more computer time.
B B B B Often the input sequence will be rather long, requiring a delay in real-time
Sy -2 fd2) -0 Ji0) -0 /0y =0 | system processing, because all the x(n) sequence is needed before evaluation of
LH3)=2 f(3)-0 A(1y=0 f(1)-=0 y(n) from Equation 9-46 can be initiated. Te shorten this delay, we can
d finallv. we have: - decompose the x(n) sequence into a number of shorter segments, each of which
and inafly, : . -¢an be processed individuatly with y(n) then becoming a summation of partial
F(0) =8 convolutions. This idea is based on superposition. Instead of having a single input
F(4) = F(2) = F(6) = F(1) = F(5) = F(3) = F(T) = 0 ‘x(n), we have a sum of inputs. Let x(n) = x, (1) + x,{n) + - - -+ + x,,(n). We

'can start the processing involved in Equation 9-46 by using x,{(#) which is the
data record gathered first. As this processing proceeds, the second data record
' X;(n) can be obtained. Then use x,{n} in Equation 9-46 as x,{n} is being
collected, and so on.

In addition to its use in fast convolution, the FFT is also useful for fast
correlation. Since the correlation operation is structurally similar to convolution,
the sequences involved are often segmented into shorter sequences with which
 partial correlations are performed and the partial results are combined into total
.correlation functions. Correlation and autocorrelation techniques can be used for
mwmﬁ_‘: identification. For a system with input x(n), output y(n), and impuise
‘response A{n), we can of course compute X (k), Y(k),and H{k) using the FFT.
If we have the input and output available, but not the system n_nmﬂ,_n.:o: that is,
h(n) or H(k}, then we can write:

Both these approaches yield the same result we obtained with the DIl
FFT. The number of computations involved in these approaches is roughly
similar. This is verified by the plot in Figure 9-11, which shows that the
tremendous advantage of either DIF or DIT FFT algorithms over the
direct DFT calculation becomes apparent at larger values of V. The vulue
of N = 8§ is too small to make much of a difference.

9-5 APPLICATION OF THE FFT

The FFT is typicatly applied in the modern world of engineering in almost cvery
situation where Fourier transforms are employed. Thus for FFT applications

consider the discussion of applications from the previous chapter and use the I'I'T Y(k) = H{k)X (k) (9-47)
in place of the continuous time Fourier transform. However, recall that we il YOX*(&

. = H{K)X(Kk)X*(k 9-4
not always want to compute Fourier transforms. Often we used Fouricr (RIXT(R) (X)X (k) (9-48)
transforms in a theoretical sense to describe concepts involved in the communica- = H (k) 1X(k)?
tion theory or in the filter theory. In those discussions the FFT would not be or HD = Y (X* ()/IX G (9-49)

needed. Yet, when it comes to real-world engineering practices, we frequently ire
required to compute transforms rather than use the transform theory to develop
or demonstrate abstract concepts. A knowledge of the basics of the FFT, then,
seems more and more cssential for today’s engineering work.

One place where the FFT is useful is in digital filter design. We know thil
the output of a digital filter is expressed by the convolution summation:

' The numerator is the DFT of the correlation of the input and the output. The
denominator is the DFT of the autocorrelation of the input. Both these DFTs can
be computed with FFT algorithms. Then the inverse FFT can be used to
determine A{n), that is, to identify the system.

Finatly, spectral analysis is a popular area of FFT employment. The basic
 idea is to transform a time function to get its Fourier spectrum. The time function
is discretized and the DFT or FFT is used to obtain the spectrum. Most of this
work presupposes an extensive background in probability and random variable
theory and is beyond our present scope. Some general comments: To obtain
spectral estimates from a finite set of measurements typically employs the power
spectral density function which is just the Fourier transform of the autocorrela-
. :c= :::..:c: of :F, data :.:F. éc:n:nc The n_..:s .,Q,_cn:nnf. :::E__ are

o

y(m) = 2 x{(iYh(n - i) (9-4%)
j= -
where x(#) is the input and A(n) is the unit pulse response. If x{n) and h(n) e
finite data sequences, nonzero from # = 0to & — 1, then we can writce:
N-1

yin) - M x(kin — i) : (9 by

i=0

_ __cs_::_ wo _._ pernnt as Lo save o lan ol _,.::s.,_ﬁ:..... ol :_.. wortelon function :::.__:: f ”:.:ﬂ._._:, e cxiend

__:.___.:L Ty and HCAY TEY] Then

Siee we only have o hine data sequence avinlable, we med niake sone

388 9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSFORM

estimates of the unavailable data. For instance, the autocorrelation function ()
is defined for all n, —o < n < «. However, in view of the finite nature of our data,
we can only caleulate r(n) for —k < n =< k. The question is: How can we make
reasonable estimates of the r(n) values outside the range —&k = n = &7 A varicty
of spectral estimation techniques have been developed to deal with this problem
The interested reader is encouraged to consult the literature.

9.5,

i 9-6.

9.7,
SUMMARY

In this chapter we have developed the discrete Fourier transform (DFT) and the
inverse discrete Fourier transform (IDFT). We have shown the relationship of
the discrete time Fourier transform to the Z transform. A number of examples
illustrated this theory.

We considered the properties of the DFT, many of which were similar 1o
the continuous Fourier transform properties. In particular, the convolution
property deserved some ¢xtra attention due to the distinction Ewﬁ needed to be
made between the periodic and aperiodic convolution.

10.
Then we derived the fast Fourier transform (FFT) algorithms: T'ho
decimation-in-time (DIT) and the decimation-in-frequency (DIF) fast Fourier
transforms. The similaritics and the differences between these two approaches .11
were indicated and the inverse FFT (IFFT) was developed. A few examples were
worked to demonstrate the theory,
Finally, some FFT applications were discussed. These discussions werg
rather general in nature because many FFT applications are merely Fourice 12
transform applications in which Fourier transforms are numerically calculaied. "
PROBLEMS 13
9-1. Let f(n} = Cos (x/8 n) + Cos {r/4 r). Using the 8-point DIT FFT, determinc (lia
DFT of f{n):F (k). Use samples of the f(n) fromn - 0,...,7.
9-2. Prove Parseval’s theorem for the DFT, that is: 14.
N-1
2 |xm|* - M X
] k=0
9-3. Prove the symmetry property for the DFT, that is: 15
?_zxﬂtc — x(—k)
&L_. Find the discrete time Fourier transform for:
@) f(n) = u(m) — u(n — 3) + 3(n - 4) 016
) f0n) = (3)"u(n) o
(e) f(n) - Af: Cos nruln)
W o o™y (WY 1)

| PROBLEMS

389

Determine the Z transform for the functions in Prablern 9.4. Then, using the Z
transforms, find the discrete time Fourier transforms.

Determine the 8-point DFT for the sequences:

(a) f(n) =[1,0,0,1,0,0,1,0]

b) f(w) =11,2,3,0,0,0,0,0]

(¢) flm) =10,0,1,1,2,2,3,13]

(d) f(a) = [10, 20, 10, 20, 10, 20, 10, 20]
Determine the 8-point IDFT for:

(@) F{k) =1 — Coswk/2

(b) F(k) = Cos 7k + Cos wk/3 .
(€) F(k) = (k- N(Y)*

Construct the butterfly signal flow graph for the 16-point DIF FFT and the
16-point DIT FFT,

Compute the 8-point FFT (DIF or DIT) for:

(@) f(n) = (})"u(n)

(b) f(n) = uln + 1) — u(n - 1)

{€) f(n) = u{n) Cos nn /8

A f(n) = uln) — u(n — 2)(3)"

Consider the lunction x(n) = vaaxﬁav. Let V=6,

{a) Determine the even and odd parts of x{(n): x,{n) and x,(#n).

{b) Show that X,(k} = Re[X(k}] and X (k) = jEm[X(k)].

A certain time sequence x{#) has a DFT:

»*\A\ﬂv = ﬁ—. 1 \.\.. O.O‘ O. 1 +p\..%.
Determine x(n) and also the IDFT of X{(& — 4).
Let:

N=8

—1],

x(n) = {1,0,0, 1,4, —j., 1,0]
Show that x*{n) «= X*(—k).
Demonstrate Parseval’s theorem for x(r) + X (k)

where

x(n) = N =4

Using the symmetry property and knowing x(n) ~ X (k)
la, o, a0 a] and X(k) = [By, B 83, Ba] and NV = 4
Determine the DFT of p(n) = [81, 82, 83, Ba].

Determine the “coordinate normalized Fourier transforms™ Fg{0) for the following
time sequence:

a) f(m=1[1,2,3,4321}]

(b f(m) = (3)" uln) + 2" u(—n)

(€) f(n} =d(n — 5) + 6(n + 5) + 25(n)

Determine f{n) using Fquation 9-22 when V = 4 and
@ Fk) -1, 101
M kY- q0.01, 1]
(ol MehY | 10000

[3, 10, 4, 5],

where x(n) =

3980 9/THE DISCRETE FOURIER TRANSFORM AND THE FAST FOURIER TRANSFORM

Chapter 10

9-17. Determine the DFT of the Hamming window that is described by the equat
w(n) = 0.54 — 0.46 Cos [n({n + 0.5)/4]. Let N = 8. Compare these results to the
DFT for a corresponding rectangular window.

State Variable Theory

9-18, From Equation 9-25 we have:

N—1

fo = > Fw s

and from Equation 9-36 we can write:
1 N=1 *

S = S F*kwE
ka0

(a) Show that these two results are the same.
{b) Explain why the second formulation is more appropriate than the first for [FI']
computations.

9-19. Let:
S =11,1,1,1,00,00], N=-%§

We know that | F(6)]| = &, Cos axfl Cos «,0. Determine o, @, and a;.
9-20. Demonstrate the linearity property of the DFT by determining (k) when

Sy =83+ 12())", N-4,n-0,...,3

JNTRODUCTION
9-21. Let:
x(m) = [1,1,0,1] and p(n) = [0,0,1, 1], N-4 his m:mm chapter on state <m1m¢_nm wﬂianm an :.:mm_.m.:o: .Om much .Om the
] eterial in the text. State variable equations are solved with time-domain and
memwau_\uﬁo»w\;f Y(k), and show that z(n) - x(n) y(n} = [0, 0, O,] <+ ransform methods. Our knowledge of differential and difference equation
* .

lutions comes into play, and we use the Laplace and Z transforms as well. We
ill consider the application of state variable ideas to some control system
roblems. State variable theory is one of the most important areas of systems
theory and in control theory we have one of the most important applications of
tate variable theory.

. State variable representations of linear systems arc time-domain descrip-
fons. They have certain advantages over the familiar difference or differential
#quation representations studied in Chapter 2. The state variable representation
ffers a concise and precise notation that lends itself well to digital computer
processing. Multiple-input—multiple-output (MIMO) systems are easily man-
ged within the state variable framework. In addition, extensions to time-varying
nd nonlincar systems—-although not considered in this text—can be readily
flected through the state variable representations.

The everyday idea of state is well-known: “the state of the Union,” “the
#tate of the art,” “the state of one’s health,” and so on. [n this sense, the concept
of state refers .o the conditions or attributes or circumstances of a person or
thing. Within the linear systcms world the idea of state is much more precise.
The state of a dynamic system is the smallest set of numbers called state
variables —which if specihied at same initial ime ¢, or &, can be used 1o predict
the system’s behavior forall s - g, 0t & - kg, provided that the inpnt o e syslem

