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Consider the following system: .

() =F(P

\ﬂ— q(f) \V..A/ ps)

The block labeled LP is an ideal low-pass filter with bandwidth 1~
ime function f(¢) has a Fourier transform F(jo) = 10{u(w + 2)
Determine and plot Z( jw), Q(jw), P{jw), and g(t).

Z(jo)y—=z(2),  QQw) ~q),
A low-pass filter has the system function:

10(10 + jo)
(5 + jw)(20 + ju)

P(jw) « p(t)

H(jw) =

Determine the cutoff frequency wy. Then normalize the frequen .
by w/wg. Convert this normalized low-pass filter into a band-pass fiH§
50 and w, = 40, w, and w, are respectively the upper and lower cufy

Plot the magnitude of this band-pass filter.
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Chapter 9

The Discrete Fourier
Transform and the Fast
Fourier Transform

INTRODUCTION

In Section 8-6 we illustrated the essentials of the Fourier analysis by considering
a number of applications. Most of these applications were from the communica-
tions area. Another area of engineering science that is becoming increasingly
important is that of signal processing. Within this field, the digital or discrete
Fourier transform is beginning to play a large role. Real signals, like radar
tracks, which are often processed with the Fourier transform in order to reveal
their spectral content, are typically measured at discrete points in time, resulting
in discrete time signals, f(n). These discrete or discretized time stgnals call for
some kind of discrete Fourier transform {DFT).

Thus the need for a DFT arises from discrete signals. From a slightly
ent point of view, let us recall the definitions:

Fljo) - [ “f @ di (9-1)

] - .
f@ -5 S “F(jo)e™ do (9-2)

computation of these integrals using digital computer processing
bat we take the continuous signals £ (r) and F( jw) and discretize them.

We replace the integrals by finite summations. These manipulations lead
h ..ﬂ.ww toa discrete Fourier transform and an inverse discrete Fourier transform

After a discussion of the DFT and the IDFT, we consider the problems of

‘- .Hmsm:a leakage and the technique of windowing, all of which are relevant to the

£ et wWays to compute the DFT and the IDFT.

€1l we investigate some of the DFT properties, after which we examine some
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The fast Fourier transform (FFT) is an efficient way:
omputations called for in the DFT. Its efficiency results from.
wmber of DFT mathematical operations. This 18 accomp
ydvantage of certain periodicities that appear in the DFT. In this
'ocus on the development of two basic FFT algorithms: the.dec
algorithm and the decimination in frequency algorithm.- .

This chapter, then, explores the mathematical basis of the |
FFT. Although research into the theory and applications of the I}
FFT has expanded considerably since the early 1970s, there
important research to be done in these areas and interested
encouraged to consult the literature. _
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9-1 THE DISCRETE FOURIER TRANSFORM
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Given f (n), how do we determine its Fourier transform? The last ¢
only with continuous functions, f(®. In order to arrive at a di
transform, we follow a path that takes off from the theory of Fou
transforms) and employs the duality property. Recall from Chapter § ¥
is periodic <

1 _ d
then Cr=— .\- -\.ADN!‘S{ 4t A (d)
T Jr Eu___..m 9-1 (a) _.”ozw_n_. transform pair; (b} periodic time function and discrete frequency
) function; (c) periodic frequency function and discrete time function; {d) same as (c)
and | fo - M e except frequency is normalized.

K= —x@

9-1(a) will always have a Fourier transform that is not band-limited. On the
o.n_un_. hand, if F( jw) is band-limited as in Figure 9-1(a), then the corresponding
time function £ (¢} will never be time-limited. Time-limiting and band-limiting
MMW M._“_Em:w exclusive phenomena. Although proving this in general is rather.
ha “w“ ” glance at some of the famous Fourier transform pairs of the last
&Ew.zam.m 0%5 be convincing. Note, wo._. example, that the square pulse that is
e ite rm.m m:m.zn transform .&ma is not band-limited. The consequences of
useful fiction” to be employed in this development will be considered later.
% >$=E%:mﬂ mw.ﬂ that f ‘Qv is :on.vnlo.n:o. Now sample F{ jw)atw =0, + w,,
this nﬂ_.hn.mmn 1s vields F( jnw,), a discretized frequency domain function. Using
the co » We can construct the ?wn:n:ow-aoammn points ¢, which are actually
. mplex exponential Fourier series coefficients:

This is the complex exponential Fourier series representation i

series coefficients. This well-known pair can be represented as: *

Corresponding to a periodic time function, we have a sequence
discrete frequency domain that are the discrete exponential |
coeflicients.
Now if we start with a discrete function f (1) = f (#T), then
discrete sequence of time points that are analogous to the discrete Fo
coefficients. Duality ideas suggest that corresponding to the
function f (#) we would have a continuous frequency transform th
the frequency domain. This proves to be precisely the case. - .
Consider the transform pair: : ,. . ) F(jnw,)

F(8) = F( jw) Cnm— (9-7)

q
To illustrate the development here, assume that we have an f(2) s

in Figure 9-1(a). The time function f (#) is assumed to be time-ii
outside the range —« = f = a. The transform F(jw) 18
band-limited: It is zero outside the range —8 = « < §. Such
fictitious, of course, because any time-limited f (f) like the triang

Co . .

3 oﬁ”:nMwo:aEm to .Hr.nmn Fourier series coefficients we have fz(#), the periodic

E wouly n of the original f (¢), periodic with period . The functions f;(f) and ¢

. %Eunmq as in Figure 9-1(b). ’
€Xt we employ duality and reverse the roles of f;(¢) and ¢,, the

Omain and frequency-domain functions. Instead of sampling F( jw), we
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mple f(#) at t = 0, +T, +2T, .... This yields f(n) = f(2
quence of points that in the time domain is analogous to a di

ymain sequence of Fourier series coefficients. Employing the co
e correspond to this sequence the periodic extension of F( Je); o8
he functions f{#) and Fg(jo) would appear as in Figure 9 ]
;(_jw) is periodic with period w, and we can write:

Fg(jw) = D_ e
here T — 2w/w,. Note that Equation 9-4 has a positive mmmn_u_..ms
cponential. The negative sign in Equation 9-8 is due to the fi
rgument reversal occurs in applying the duality property. .

Now let § = @7 and write:

Fe(@) = > 8™
he Fourier series coeflicients appearing in this equation are the san
f £ (1), that is: b

Ee=f(nT)=f(n)

#.
f(ny = — [ “? Fe(jw)e™ dw
&g v —agf2

nd
ince w = 8/ T, we can write dw = d0/T.

1 x L
hen fony -5 / 7 Fy()e ™ db

Fe(®) = 3 f(m)e™
\emember, Fg(8) is periodic: Fx(8 + 2x) — Fz(6). Also, the
ariable is not  but 8, where 8 can be thought of as a norma’ NGA
his reason, Fg(#) is sometimes referred to as the “coordinate norm
ransform.” The functions f(#) and Fg(8) would appear as in
“quations 9-12 and 9-13 constitute a discrete time Fourier transfo
ufficiently simple discrete time functions f (#) can yield a o_oa.am

or Fg(9).

nd
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Figure 9-2  Sketch of f (r) from Example 9-1.

4 1 THE DISCRETE FOQURIER TRANSFORM

} EXAMPLE 9-1

@.v.._;nv.

353

Determine Fg(#), the discrete time Fourier transform, for £ () = ) u(n).
This function is sketched in Figure 9-2.

L}

Solution
F QVMM Wem _ +wmde+wm|§+ cee
£ ~\2 2 4
_ 1 1
T 1-4e® 1 -}Cosf+1}jSind
Fg(8) = |Fz(8)| carg Fe(0)
w R
where |Fe(8}} = g and
Sin 8
Fz(8) = —Tan ' {—
arg Fz(9) an 2 —Cos#

The magnitude and phase are plotted separately in Figure 9-3. Both
functions are periodic with period 2,

It is interesting to note that in Equation 9-13 if we let e ” = z, we get

Fol|rs - Fslz) = 3 fm)z" (9-14)

which is none other than the two-sided Z transform. Thus all of the two-sided Z
transform theory applies to the discrete time Fourier transform. To determine
the discrete time Fourier transform for some f(n), find the two-sided Z
transform of f () and simply let z = e .

EXAMPLE 9-2 _
Determine Fg(8) for f{n) = ()" Cos (nw) u(n) using the Z transform
theory.
1Fg(8)] arg F (8)
45° 1
—— 4 M@o
7,
- - I
——l 1 1 o - L \
T T x 8 /-7 T Jr 8
2 2 ’ 2 2
/
-26°4 -~
Figure %3 Magnitude and phase plots of the discrete time Fourier transform of f () =
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Solution. f(#) has a Z transform
I — (} Cos x)z7!
F = 3
MNV —|WOOM§NI_+WNIM
- 14527 _ z(z + 1) 2
~+WN|_+WNIM Nm+wN+Wln+w~ |
» A

Then Fo(8) = F(2)|,0r = 2 Cos 0 + jSing

e? +17 Coso 111 jSind

whose magnitude is 3/ /10 + 6 Cos 8 and whose phase is +8&

8/ + Cos 6)). . .

Using the Z transform is fine for simple signals whose Z tra
adily available. Unfortunately, the time functions processed by Fao
ds are typically very complicated sequences of points that are often re;
yme information signal hidden in noise. Closed form solutions for Fy (8
yr realistic signals are rather uncommon. Actual applications call for g
:chniques. Thus even though the Z transform ideas theoretically fit
ne discrete Fourier transform development, in practice, we usuall
umerical computation to determine Fourier transforms. This indi .
1ust limit our summations—as in Equation 9-13—to finite summatiés
1g, for example, N points. Let N be an even number. Although not &
eeps the development simpie. Let us change the infinite summatiofi
-13 to a finite sum from r = O to n = & — 1. Of course, the more poi
1 the summation or the larger &V is, the closer the finite sum approxi
‘o distinguish the finite sum from F(8), we call it F(8). Then we ca

FO) - Y f (e

Often, in real signals, most of the energy is confined to. a
uration. This provides some justification for using F instead of F,
‘quation 9-15 is not without problems. Note that 8 is still confi
omputer computations, F (8) and f () need to be functions of disgre
Ve must choose values of # for which the computation is to be perfs
ariable r is already discrete. Let us sample the periodic and contin!
V equally spaced points over one period of the transform: 8 — 2xk / N
, 1 N — 1. Then, instead of Equation 9-15, we can write F(#

PEEIE N

N—1
F(k) = 2 f(me/ G0t
=0
"his is the discrete Fourier transform (DFT).

So far, then, what have we accomplished? Starting with F(
ontinuous Fourier transform of the continuous time function f {f);.
hrough a series of mathematical operations and transformations—
~(k) as the discrete Fourier transform of the discrete time function I8

From the discrete time Fourier transform Fg (8}, we can returi: %
lomain to retrieve f(n) by employing Equation 9-12. The f{(n) thi

h.q THE Liani iic TRASMTET Tt e

would appear as the f(n) in Figure 9-1(d). Note that this f (n) is nonperiodic.
_ﬁmm_.io_.E Fourier calculations, however, generally employ F(k), not Fg(6).
Thus Equation 9-12 for f{(n) will not do. Given the N samples of F(k),
nevertheless, ihe means to retrieve the time signal £ (#) do exist. The f (n) that
results from F(k) turns out to be a periodic function. It is, in fact, a periodic
extension of the f (#) from Figure 9-1(d). Therefore the F (k) m:._a its correspond-
ing [ (n) are both discrete periodic functions. They appear as in Figure 9-4. To
determine f (1) from F(k), let W — e~ /AN

N-]
Then Fky= Y fmWw*,  k=01,...,N—1 (9-17)
n=0
This equation can be expanded as follows: .
FO =fO+f(M)+---+f(N-1)
F()=fOW* + fF(DW' + - - - + f(NV - 130 Ak
FQ) =fOW° + f(HW? + « - - + f(N — DD
FIN -1 =fOW + fW¥" 4 -« 4 f(V - YD
[ F0) 1 Twe we wo ... wo | £(0) .
F() we W' w: o ... WD £
_.qﬁNu _ :\o vm\u :\.n ,- . wﬂ\u;ﬂl: .\.ANW A@u—mv
ﬁ.AZ - Nl |we owHt el -0l £ (v — 1)
These can be written as:
F-wj (9-19)

Fis the N-dimensional vector on the left-hand side of Equation 9-18. fis the
N-dimensional vector on the right-hand side of Equation 9-18. W is the ¥ x N
matrix that is multiplied by £ From Equation 9-19 we get:

f=WF

(9-20)

Discrete and periodic time and frequency functions.
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We assume that the inverse exists and avoid those cases wh _. ;
singular. 1 1 1
| - % B S
EXAMPLE 9-3 == 2 2 2 2
Determine W ' for the case of ¥V = 3. 3 q 1 V3
. 3 1 .
Solution -3 —j 5 v KW
1 1 1 . . - J
1 and this expression can be written as;
W=l W W and W=e 73— -3 ;
we we
1wt owt N we
él_ = M ,—\w\o vm\l_ vw\;u
W Wt W_w' O Wri_-w W W-r w4

W2 Wt Wt 1 w2
Wi-Ww  1-W W1
We 1 2w - W — 2W*

ﬂw‘w\a -1 - - . - .
Now, using induction, we can show that the result of Example 9-3 can be

generalized for any /V as:

i we . -
Dividing everything through by W3, we obtain: we W PN}
Wiow W W W W 1 v woo..
: . Wo = » o e
w-w  wow? wrowt W' ¢ W WD (9.21)
W= i ; ' .
w-i_w? wlrowt o wiow! : .
W:e2W' - Wi-2W W WS NS0 (V-1
Now C . .. oL . : : .
_ : omparing this inverse to the matrix in Equation 9-18, we note that the only
W= o 3 W 1 4 l/m W .m differences are the change in sign in the exponent of W and the multiplicative
2 /2" 2 2’ :  factor of 1/N. The change in sign actually corresponds to taking a complex
conjugate. Thus in view of Equation 9-16 and the matrices %/’ and 9/~', we can
T—\l_ _ W + : ./\M :\Im |H _ .\. ./.\W . write:
T2 =7 2 2° ] =l
Sy =D Fik)e/eom (9-22)
’ k=0
Substituting in these values, we have: .. . :
& ] W_H,_m ﬁ.:n E<oﬂmw U—uﬂ (IDFT). The DFT is expressed by Equation 9-16. The
i3 i 3 j J3 pair can be indicated by the notation:
3 v 3, _— Simy—~ F(k) (9-23)
i3 37— 27 J Xpressing Equation 9-23 in terms of W, we get;
n_‘tl_ = N1
. 3 . 3 — kn
G 3 3 F(k) MEE\ (9-24)
2 2 2
- and 1 ¥ o
343 fim =% M F(kyW (9-25)
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he similarities are striking. The minus sign of W~**, again,
onjugation. Except for this and the factor of 1/, the forms.
DFT are identical.

k- onal prior to sampling. This would reduce overlap by producing a spectrum
th sharper roil-off. .

3 Another DFT problem closely tied to the aliasing problem is that of
Jeakage. Both these problems are rooted in the time-limited nature of real
_u_.wmmom_ signals. .Hrn abrupt discontinuities in time-domain signals due to
- starting and stopping a data record produce frequency spectra that typically have
F_main-lobes containing most of the spectral information, as well as side-lobes in
¥ which information is lost. Side-lobes are spurious frequency peaks that detract
from information contained in the main-lobe. Minimizing the side-lobes will
minimize the information that is lost in the side-lobes. The information lost in the
side-lobes is called leakage. The standard method of side-lobe minimization
employs the technique of windowing. Windowing smooths the abruptness of data
record discontinuities. .

How does the idea of windows fit here? A window not only limits a view but
frames and shapes it as well. The data are always cut off or framed by a window.
The phenomenon x under observation is observed from some time ¢, to some time
t,. In a typical DFT processing event, a signal x is available from ¢ to £,:x(#,) to
x(1,). In a discrete seiting we can arrange these values as x(#n) from# = 0 to NV —
1. Before delving too far into the discrete theory here, let us consider an example
from continuous time. Continuous time representations seem to have a larger
appeal to the uninitiated imagination. We will return shortly to the discrete
s_.go:a. This particular example is very simple, but nicely illustrates the general
theory.

)-2 ALIASING AND LEAKAGE PROBLEMS

o far we have illustrated the theory by using the fiction of:
and-limited signal. Actual physical signals, however, are times,
rom a radar trace, for example, must start at some finite time f,
nite time f,. Time-limited signals, in reality, are never bam
7(jw) might appear as in Figure 9-5(a) and, consequently, F (k) v
n Figure 9-5(b). The overlap in F (k) produces a phenomenon
\n alias is something that stands for something else, like an asg
akes the place of an actnal name. For our purposes, aliasing ref
requency components that substitute for other frequency co
)-5(b) reveals that at a frequency slightly below W, for insfag
requency component standing in for the component that would B
f no overlap occurred. The actual value at that frequency
.ontribution from the original unaliased spectrum plus a term fr
-omponent slightly above W. With aliasing, information i
:orrupted, and uncertainty is introduced. The effects: of 1
vhenomenon can be minimized, as we have seen in Chapter 8,
sriginal f(£) at a sufficiently high sampling rate. The sampling
hat we should sample at a frequency at least twice the hig
F(jw). If F(jw) is band-limited, there is some finite sampling fre
avoid overlap. But, again, F(jw) is, in reality, never band-limited
need to sample at an infinite frequency to avoid overlap. Wha
sample as fast as possible within the hardware constraints &
inevitable aliasing to a minimum. We could also use a low-pass

EXAMPLE 9-4
Given:

g(1) = Cos wyt + G(jw) = w[6{w — wp) + 8(w + wp)}

Let w(z) be the unity gain square pulse:
wit)=u(t+7T)-u(@-T)
SinwT

w

Fjw)

iy

where W(jw) =2

Sol ution. Then J(8) = g(yw(t) can be considered to be a “windowed”
version of g(#). f(¥) is a truncated cosine. This could be a data record over a
finite time interval of a pure cosine function. Taking the Fourier transform
of £(1), we would convolve G {jw) and W(jw) to get:

e Y e Y . . i .
. ui .. e . ! . 3 Fljw) = Sin{w - o)) T N Sin{w + wy) T
_
|
1

W — Wy w + Wy

Note the plots of G (jw), W(jw), and F(jw) in Figure 9-6. The effect of the
Window is to replace the impulses of the original function with transforms
shaped like the transform of the window (Sin x/x), except that they are
located at the points where the impulses occur. Looking only at F(jw), we
¢an deduce the presence of a sinusoid at @ = w, in this simple case. The

(v)
Figure 9-5 (a) Non-band-limited spectrum; (b) overlap in the DFT spe
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GGiw) - EXAMPLE 9-5
@ L4 " Given:
m.ﬁau = M....M'Nu H'A'Q»L.quﬁ .—. ”_.Nq _. ,—'OuN......_
—ex . “ ) ﬂ . ﬁ
W(jw) n=20 n=28§
®) of is a data record to be processed from n = Oton - 8. Employ a Emzms_mw
~ weighting |
N’ where w(n) = _o.ﬁ*o. 0.25, 0.50,0.75, 1.00, 0.75, 0.50, 9.25, 0,00]
n=0 :Hm
() Determine the values of /' (n) to be processed.
T —wy . Solution. The values of f (n) to be processed are f(n) = g(nyw(n).
Figure 9-6 (a) Unwindowed Fourier transform; (b) transform 'of’ . .. Thus  f(n) = [0.00, 0.75, 2.00, 1.50, 2.00, 0.75, 0.50, 0.50, 0.00]
transform of the windowed function. . - i t
: n=0 n=38

F{(jw) function peaks at exactly those frequencies, +ay, W
its impulses. However, if g(t) were composed of a sim 6

many different frequencies, then F(jw) would consist
shapes centered at these different frequencies: The*
becomes obvious. The peak value of one Sin x/x term,
be so small that it gets lost in the side-lobes of a neighbor,
frequencies and amplitudes of the sinusoids in g(¥) from's
is called the spectral estimation problem, a large area of

field of signal processing. One straightforward tactic to in
of estimating the sinusoids in g(¢) is to medify the wind
such that its transform is sharper or has lower side-lobes!
w(f) were chosen to be a triangle pulse imstead of the squs
transform takes the form (Sin x/x)* which has lowe
Sin x/x. Many different windows have been proposed. So
be considered shortly.

Now to consider some of the more common windows, assume that w(n) is
an even function with the origin as the point of symmetry. Since there is a point at
n = 0, evenness will require an odd number of peints for discrete window
functions. However, we assume that f (n) has an even number of points. This
turns out to be convenient for the fast Fourier transform development that occurs
later in the chapter. We also assume, in fact, that N = 2” where P is an integer. It
seems problematic to have w{zn) with an odd number of peints and £ (#) with an
even number of points. This even—odd problem is resolved by recalling that w(x)
18 a periodically extended function so that its first and last points are the same.
q._...ﬁ.nmoqa we consider windows centered about the origin and having N + 1
vo_E.m_ where V is even. Then in an actual problem, since w{#) is periodic, it can
be shifted such that its left point coincides with the origin and the right point can
be deleted. Remember that such a shift only contributés a phase shift term and
leaves the magnitude of the frequency response unaffected.

:.oa:mh:»&&ﬂ%: to the square and :.mm:m.z_mn windows, some of the other
omﬁmmmnwswmn windows are: the ﬁm:z window, the Hamming s_msaou.a. the
There pe m_“o ow, the wwmm_ﬁaﬁ.ﬁ@:ao? mzﬁ_. the Uo_w_m-Ornawmnvnq window.
 discys 0 many <m:m:mm within these basic types. Since we must keep our

$10n brief, we examine only a few of these.

Now in the discrete world, let us assume we have sam
record f(n),n=0,1,...,N — 1. We could employ maamno:
the DFT without further ado. This would correspond to
rectangular window wi{n) - 1, =0, 1,... , N — 1. Then#i
where g(#) is the actual time function that in principle cotld e .
minus to plus infinity. Data from an actual finite time recod .. #2-1 The Hann Window
gathered as g(n) fromn =0ton =N — 1. Without windowing
window, we would just let f(#) be these g(n) values. As Exa
however, it is advantageous to employ nonuniform windows, e - ") -0 I N N
to know the spectral content of a signal. If a 5&:@&&.&. i S5+ 0.5Cos N T3 - ,o,1,..., 3~ 1 (9-26)

le, then the first points in the data record are weighted sl o
M”M—“M nmhr“ommrﬁhw ma..wm:w. and the last points are u..w_mo. weiiil S r..:am. of windows are sometimes called “‘cosine on a pedestal” windows.
itlustrate this weighting procedure, consider the following e2 g Cosine is superimposed on a uniform or rectangular window. The result of

alytically this window is described by the equation:
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this configuration is very low side-lobes in the frequency domain.
case can be seen if the Hann window is compared to the rectangulary
Sin x/x pattern of the rectangular window has rather large si
truncated cosine term in the Hann window produces a series of §
that are displaced from the origin in such a way that their peaks
the side-lobe terms in the “pedestal” part of the Hann window. This
but merely superposition. _.

EXAMPLE 9%-¢6
Determine and piot the DFT for the Hann window if ¥ - 8,
results to the DFT for a corresponding rectangular window.

Solution. For the Hann window, let us first plot w(n) m.E
left point coincides with the origin. -
Let:

W(n) = 0.5 + 0.5 Cos —

3 n=—4,-3,-2,-1,0,

which we plot as in Figure 9-7(a). Now shift w(n) to ﬁ._ﬁ wmwww,
form w(n) as in Figure 9-7(b). Using w(#), we compute the B
7 . .

Wk) =3 wmyw™,

=0

where W = /@ /¥)
1 -
W(0) - 400 W(Q2)=W(3) =W(4)=W(5) = I
W(l)=—20 and W(7) = -20

- _

And since these functions are periodic, W(8) = 4, and s0.0
W (k) as in Figure 9-8. Now for the rectangular window, let.

o1...,7. .
Then We(k) =8, k=0
-0, k=1,2,3,4,567
wn) wi{n)
1009 U N ¥
o e o e
& 050 X 051+ e ‘e
\\0 /./ \.\ e,
UL T [ Y A TR S S TR S [ |
—4-3-2-1 [ 1 2 3 4n 12 3 4 5 6 7
{a) (b)

Figure 9-7 {a) Plot of Hann window for ¥ = 8&; (b) Hann window shifted
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Wk
4 4

il J

g
Ll
[ ]

=R

7
]

Figure 9-8 Plat of DFT for the Hann window,

We plot Wy (k) as in Figure 9-9. Now observing the DFT plots in Figures
9.8 and 9-9, we seem to have results that contradict our discussion of the
Hann window. From Figure 9-8, it appears that the Hann window exhibits
some side-lobe behavior due to-the valuesof —-2.0atk =t and k = 7. The
rectangular window DFT in Figure 9-9 appears to exhibit no side-lobes at
all. Why is there a discrepancy? The DFT of the rectangular window seems
1o have no side-lobes because the sample rate is such that we sample exactly
at the zeros of the actual rectangular DFT. We know the rectangular
window has a Sin x/x type transform. These patterns do have rather large
side-lobe levels

If instead of computing W (k} for these two windows we were to first
determine W (8) and plot W (#) versus 8, then we would see the side-lobes
displayed in a continuous fashion. W(8) for the Hann window and Wx(#)
for the rectangular window would appear as in Figure 9-10. Notice that the
main-lobe for the Hann window is wider than the main-lobe for the
rectangular window. The side-lobes for the Hann window, however, are
very low,

Before we leave this Hann window to consider some other windows, a few

general comments are in order. For small values of & (like ¥ = 8) we should not
expect W(0) and W (k) to be very similar. But since 8 is sampled at § — 2xk/N,
for very large values of N, the number of sample values of W (#) in the range —=

<8 < 7 becomes very large as well. Thus W (k) should look more like W (8) for

large N. Now sometimes the side-lobes in these windows are reduced so much
that they hardly appear at all on a linear plot of W (k) or W (8). For this reason a
4B scale is often used to plot the DFT magnitudes. The dB level of the first or

largest side-lobe is often used as 2 measure of window quality. But since lowering

Wa i)
8

1 2345 6 7 8

Flgure 0.9 Plot of DFT for the rectangular window.
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P Then, for example:
T.(w) = 1 — 8w? + 8w*
For a particular case in which we want side-lobe levels of 30 dB down from the

main-lobe and for which we have &V ~ 100 data points, we can write the DFT of
the Dolph-Chebyschev window as follows:

W{8)

W (k) = Cos (100 Cosh ™! {Cos m (9-29)

In general, the use of any of these windows will increase the chances of
estimating the frequencies and amplitudes of sinusoids contained in a given data
record. Which window should one use? There is no straightforward answer to
this question.

Sometimes different windows are used with the same data record to see
which window yields the minimal leakage. Occasionally, knowing beforehand
what the data record is like will dictate the proper window. Because of these
ambiguities, window selection is often considered more an art than a science. To
conclude this window discussion, we note that the use of windowing occurs not
only in DFT spectral estimation but in other areas as well, in particular, in the
design and analysis of digital filters.

Aliasing and leakage are the most serious DFT problems. The ideal, of
course, would be to have the DFT be equivalent to the continuous Fourier
transform. We must content ourselves, however, with approximations. Aliasing
and leakage corrupt our approximations. In this section we indicated the best
way to deal with these corruptions. To eliminate the corruption due to aliasing,
we need to sample the original signal at a rate greater than twice the highest
frequency in the signal. Often this frequency is not known, in which case we
sample at the highest practical rate. To deal with leakage, use windows. The
more mcwrmmzoﬁ& windows require more computation time. As in most
engineering problems, trade-offs are in order.

Assume now that we have f{n) in hand. These data points have been
gathered at the highest possible sampling rate and windowing has been done. We
are ready then to return to Equations 9-24 and 9-25. To assist in the performance
of the DFT and inverse DFT operations, we can employ a number of DFT
Properties. We will consider these next.

Figure 9-10  Plots of W(#) and W3(#), the Hann and rectangle wi

the side-lobes increases the width of the main-lobe, trade-o
always necessary. The most useful windows in practice ap
exhibiting 60 dB or more side-lobe suppression while at the sa
ing a main-lobe width that does not exceed about four time;
rectangular window’s main-lobe. For comparison purposes,
window for large NV exhibits a first side-lobe level of mur_.cﬁgﬁ.
from the main-lobe and the Hann window has a first side-lobe.qf

9-2-2 The Gaussian Window

This window appears like a bell-shaped Gaussian distribut;
discrete time domain. The exact shape of the Gaussian window
standard deviation parameter. One particular Gaussian windaw;
the equation: : L

win) = exp (—4.5(2n/N)?), ne— ..., 1,01, i

approximately 55 dB down—but has a wider main-lobe. .

9-2-3 The uo__u._.o_.oc«m%o,... Window L

This window is unique in that it provides uniform side-lobes 2
minimum main-lobe width for a specified side-lobe level and sp
data points. The use of this window in the signal processing
out of the radar design area. Radar designers have used
windowing in the design of linear phased arrays. The current’
the face of a phased array forms a Fourier transform pair v
pattern produced by the phased array radar. Dolph-Chebysch
been used in this context for many years. :

Now the analytical description of the Dolph-Chebyschey
rather complicated because, in general, it employs Chebysch
These polynomials can be expressed by the equation:

T, (w) = Cos (m Cos™* w)

9-3 DFT PROPERTIES

_M___H_UEn oo:tu:cwm Fourier transform of the previous chapter, there are a

most er of properties of the DFT Emﬂ can facilitate some analytical tasks. The

nun, cM:voZmE om. the Um.ﬁ., properties are summarized in Table 9-1. Since a

funcq T of operations _.n_mssm. different time functions or different frequency

DFY 0ns are involved, we consider only two functions, x(n) and y(#), which have
$ X(k) and Y (k), respectively.
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Data
sequence
Property representation

.crete Fourier transform x{(n)

learity ax{n) + by(n}

riodicity of data and transform se-  x{n + iNY, Lm-=

UENICES L, =H01, .

yrizontal axis sign change x{—n) X \
ymplex conjugation x*{n)

1a sequence sample shift . x(n + ng)

ngle sideband modulation e*i=tniN x(n)

ouble sideband maodulation [Cos (2wkom) ] x(m}

ata sequence citcular convolution x(m)sy{n)

ransform sequence circular convo- x(my(n)

lution

rithmetic correlation xi{myey*(—n}

cithmetic autocorrelation x(pysx*(—n)

Yala sequence convolution $(mysF{n) {augmented

sequences)
[ransform sequence convolufion My
Symmetry wm ._H NYX(m)
Parseval’s theorem 3 |xm|* equals wd .
k-0

a=0

Now since many of the DFT properties are very similar to
the contipuous Fourier transform presented in Chapter 8, we

few of the more import

EXAMPLE 9-7
Demonstrate the periodicity of the DFT.

Solution. let

N-1
XU = 3 x(mWw™
n=0
be the DFT of x(n}),

N-1 N-1 S
then X(k + mN) = 2_ x(n) wrmm _ S x(my W™
=0 ne .
but W mlzuq\zrsz _ g Jrwmn o

which equals | as long as nm is an integer. Since n is an in

integer if m is an integer-

Therefore ~ X{(k + mN) = X(k), forallm-—... ~1,%

{hat is, the DFT is periodic with period N.

ant ones. These will be illustrated by examp

F EXAMPLE 9-8

Uopo::.m:n the U._uﬂ.mo., x(n) = [4, 3,2, 1] and N = 4. Then an:._cum:,mno.
the horizontal axis sign change property and use it to determine the DFT

for

p(n) = 4b(m) + 38(n + 1) + 28(n + 2) + 8(n + 3) where N =4

Solution
N-1
x(n) « X (k) = 2_ x(m)W"™ = DFT [x(n)]
n=0
N-1
DFT [x(—n)] = 2_ x(—m)W™
=0
Letting n = —m, we get:
1-&
DFT [x(~m)) = 2_ x(m)W ™
re=0

If we let V = & and expand this summation, we obtain:
DFT [x(—n)] = x(O)W° + (DWW 4 -« o+ x(-T)W"

But recall that x(n) and W™ are periodic:

W = e~/ _ P

in this omma.

and Wk Wk W= W W= W

Also, we can write x(—1)} = x(7), ..il_mw = x(6),....,x(=7) = x(1).

Therefore DFT [x(—n)] = x(0)W* + (W * 4+ x(W
Foee e 4 x(¥ - HWED

N-1

- x(myW

n-D
and comparing this with X (k), we write:
DFT [x(—n)] = X(—k)
therefore x(—n) «— X(—k)
Now for x(n) = [4,3,2,1) and N=4,
W = md;le - .I.m.

k]

X(k) = > x(mW™ = x(O)W°

n=0

+ x(DW* + x(QQWH + x(HW*




