Department of Electrical and Computer Engineering University of Massachusetts Lowell

EECE 4130 Problem Set #2

1.Consider the coupled acoustic-mechanical system. The velocity of the masses are given by u and applied force by the variable f. The variables k represent the mechanical stiffness, M the mass and b the damping coefficient. The closed open pipe is filled with a fluid having mass density ρ_0 , sound speed c, cross sectional area A, length L.

- a. Using mobility analogy where the velocity as the "across" variable, determine the an equivalent circuit for the system.
- b. Determine the equations of motion in the Laplace-domain.
- c. Determine the equations of motion in the time-domain.
- d. Find the transfer function $U_2(s)/U_o(s)$.

2. Consider the leaky headphone acoustical system where a rigid piston generates the pressure P_1 . The interior of the headphone has a volume V. The acoustic resistance, denoted by XXX in the figure, is given $P/Q = R_A$ where P is the pressure and Q is the volume velocity.

- a. Using impedance analogy where the pressure is the "across" variable and the volume velocity is the "through" variable determine the equivalent circuit of the system.
- b. Determine the transfer function P_2/P_1 .
- c. Using your result what is the transfer function no-leak case i.e. $R_A = \infty$.
- d. Using a Bode plot show the frequency response of the transfer function. What effect does R_A play in the result. Does your result agree with experimental observations.

3. Given the equations

$$x_1 = -x_1 - x_2 + u$$
$$x_2 = +x_1 - 2x_2$$

- a. Draw the signal flow graph representation of the equations
- b. Using Mason's gain formula Determine the transfer functions x_1/u and x_2/u .